【题目】如图,客轮沿折线A—B—C从A点出发经过B点再到C点匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批货物送达客轮,两船同时起航,并同时到达折线A—B—C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮的速度是货轮速度的2倍.
(1)选择题:两船相遇之处E点( )
A.在线段AB上
B.在线段BC上
C.可能在线段AB上,也可能在线段BC上
(2)货轮从出发到两船相遇共航行了多少海里?
【答案】(1)B;(2) (200-)海里.
【解析】
由于△ABC是等腰直角三角形,D为AC的中点,而客轮速度是货轮速度的2倍,从出发到相遇,客轮走的路程应是货轮的2倍,根据等腰直角三角形性质和三角形三边关系,不难判断两轮相遇的大致位置;
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连接DE,则DE=x,AB+BE=2x,根据D点是AC的中点,得DF=AB=100,EF=400-100-2x,在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2解方程求解即可.
解:(1) (1)若货轮沿DB方向航行,∵△ABC为等腰直角三角形,点D为AC中点,
∴AD=BD.
由三角形三边关系,知AD+BD>AB,
即2BD>AB,
因此两轮不可能在AB边上相遇,
所以两轮只能在BC边上相遇.
故选B.
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连结DE,DB,如图,则DE=x海里,AB+BE=2x海里,
∵D点是AC的中点,
∴DF=AB=100海里,EF=(400-100-2x)海里,
在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2,
解得x=200±,
∵200+>
不合题意,舍去,
∴DE=(200-)海里.
答:货轮从出发到两船相遇共航行了(200-)海里.
科目:初中数学 来源: 题型:
【题目】已知等腰三角形ABC的底边长BC=20cm,D是AC上的一点,且BD=16cm,CD=12cm.
(1)求证:BD⊥AC;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB,CD被直线EF所截,如果要添加条件,使得MQ∥NP,那么下列条件中能判定MQ∥NP的是( )
A. ∠1=∠2 B. ∠BMF=∠DNF
C. ∠AMQ=∠CNP D. ∠1=∠2,∠BMF=∠DNF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的弦CD的长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若直线BC的函数解析式为y’=kx+b,求当满足y<y’时,自变量x的取值范围.
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y=
(x≠0)的图象上.
(1)求反比例函数y= (x≠0)的解析式和点B的坐标;
(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△CED均为等边三角形,且B,C,D三点共线.线段BE,AD相交于点O,AF⊥BE于点F.若OF=1,则AF的长为( )
A. 1 B. C.
D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com