精英家教网 > 初中数学 > 题目详情
如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.
(1)求m的值和抛物线y=ax2+bx的解析式;
(2)如在线段OB上有一点C,满足OC=2CB,在x轴上有一点D(10,0),连接DC,且直线DC与y轴交于点E.
①求直线DC的解析式;
②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
精英家教网
分析:(1)先根据抛物线y=ax2+bx的顶点B(m,6)在直线y=2x上可求出m的值,再用待定系数发即可求出此抛物线的解析式;
(2)①作CH⊥OA,BG⊥OA,再根据平行线分线段成比例定理即可得出CH的长,进而求出C点坐标,再根据D点坐标用待定系数法即可求出直线DC解析式;
②根据菱形的性质即可求出符合条件的N点坐标.
解答:精英家教网解:(1)∵顶点B(m,6)在直线y=2x,
∴m=3,(1分)
∴B(3,6),把AB两点坐标代入抛物线的解析式得,
36a+6b=0
9a+3b=6
,解得
a=-
2
3
b=4

∴抛物线:y=-
2
3
x2+4x;(3分)

(2)①如图1,作CH⊥OA,BG⊥OA,
∴CH∥BG,
CH
BG
=
OC
OB
精英家教网
∵OC=2CB,
CH
6
=
2
3
,CH=4,
∴点C的坐标为(2,4)(2分)
∵D(10,0)根据题意
2k+b=4
10k+b=0
,解得:
k=-
1
2
b=5

∴直线DC解析式y=-
1
2
x+5;(2分)

②如图2:∵四边形ENOM是菱形,
∴OS=ES=
1
2
OE=
5
2

∴NK=
5
2
精英家教网
∵ON∥DE,
∴tan∠NOK=tan∠EDO=
EO
OD
=
MK
OK
=
1
2

∴OK=5,
∴N1(-5,
5
2
),
如图3:∵EM⊥OB,
∴ON=2OC,
∵点C的坐标为(2,4),
∴N2(4,8);
③如图4:
∵直线DC解析式y=-
1
2
x+5,精英家教网
∴E(0,5),
设M(x,-
1
2
x+5),
∵四边形ENOM是菱形,
∴EM=OE=5,即x2+(-
1
2
x)2=25,解得x=2
5

∴M(-2
5
,5+
5
),
∴可设N(-2
5
,y),则|5+
5
-y|=5,解得y=
5
或y=10+
5
(舍去)
∴N3(-2
5
5
).
点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式、菱形的性质、平行线的性质,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案