精英家教网 > 初中数学 > 题目详情
如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线y=-
1
2
x+b
过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(1)设反比例函数的解析式y=
k
x

∵反比例函数的图象过点E(3,4),
∴4=
k
3
,即k=12.
∴反比例函数的解析式y=
12
x


(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4.
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3).
∵点D在直线y=-
1
2
x+b上,
∴3=-
1
2
×4+b,解得b=5.
∴直线DF为y=-
1
2
x+5,
将y=4代入y=-
1
2
x+5,得4=-
1
2
x+5,解得x=2.
∴点F的坐标为(2,4).

(3)∠AOF=
1
2
∠EOC.
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H.
∵AO=CO=4,∠OAF=∠OCG=90°,AF=CG=2,
∴△OAF≌△OCG(SAS).
∴∠AOF=∠COG.
∵∠EGB=∠HGC,∠B=∠GCH=90°,BG=CG=2,
∴△EGB≌△HGC(ASA).
∴EG=HG.
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
4=3m+n
2=4m+n
,解得,
m=-2
n=10

∴直线EG:y=-2x+10.
令y=-2x+10=0,得x=5.
∴H(5,0),OH=5.
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5.
∴OH=OE.
∴OG是等腰三角形底边EH上的中线.
∴OG是等腰三角形顶角的平分线.
∴∠EOG=∠GOH.
∴∠EOG=∠GOC=∠AOF,即∠AOF=
1
2
∠EOC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.

(1)求点D的坐标;
(2)求反比例函数的解析式;
(3)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,垂足分别为点A和点E,连结OB,将四边形OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F.求直线BA′的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点A(a-
3
,b+1),B(a+
3
,b-1)都在反比例函数y=
k
x
(x>0)的图象上.
(1)求a、b之间的关系式;
(2)把线段AB平移,使点A落到y轴正半轴上的C点处,点B落到x轴正半轴上的D点处,求点O到CD的距离;
(3)在(2)的条件下,如图2,当∠BAD=30°时,请求出k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=
k
x
(x
<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为(  )
A.-
2
2
B.-
3
2
C.-
2
4
D.-
3
3
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一个可以改变体积的密闭容器内,装有一定质量的二氧化碳.当改变容器的体积时,气体的密度也会随之改变,密度ρ是体积V的反比例函数,它的图象如图所示.
(1)求密度ρ(单位:㎏/m3),与体积V(单位:m3)之间的函数关系式;
(2)求V=9时,二氧化碳的密度ρ.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=
2
x
于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知正比例函数y=kx的图象与反比例函数y=
15-k
x
的图象相交于A、B两点,且A点横坐标为2.
(1)求A、B两点坐标;
(2)在x轴上取关于原点对称的P、Q两点,P点在Q点右边,试问四边形AQBP一定是一个什么形状的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,已知点P是反比例函数y=
2
3
x
(x>0)图象上一个动点,以P为圆心的动⊙P始终与y轴相切,设切点为A.

(1)如图1,动⊙P与x轴相切,设与x轴的切点为K,求此时⊙P的面积.
(2)如图2,动⊙P与x轴相交,设交点为B、C.当四边形ABCP是菱形时,求此时⊙P的面积.

查看答案和解析>>

同步练习册答案