精英家教网 > 初中数学 > 题目详情
已知在△ABC中,BC=a.如图1,点B1、C1分别是AB、AC的中点,则线段B1C1的长是
 
;如图2,点B1、B2,C1、C2分别是AB、AC的三等分点,则线段B1C1+B2C2的值是
 
;如图3,点B1、B2、…、Bn,C1、C2、…、Cn分别是AB、AC的(n+1)等分点,则线段B1C1+B2C2+…+BnCn的值是
 

精英家教网
分析:先根据三角形的中位线定理得出B1C1的长,再作图2中三角形的中位线,根据三角形的中位线定理和梯形的中位线定理推得B1C1+B2C2的值,依此类推得出B1C1+B2C2+B3C3的值,从而得出B1C1+B2C2+…+BnCn的值.
解答:解:∵点B1、C1分别是AB、AC的中点,
∴B1C1=
1
2
BC=
1
2
a,
作图2中三角形的中位线MN,则MN=
1
2
a,
则B1C1=
1
3
a①,B2C2=
2
3
a②,
①+②得,B1C1+B2C2=
1
3
a+
2
3
a=a,
同理得出B1C1+B2C2+B3C3=
1
4
a+
1
2
a+
3
4
a=
3
2
a,

B1C1+B2C2+…+BnCn=
1
2
na.
故答案为
1
2
na.
点评:本题是一道规律性的题目,考查了三角形的中位线定理以及梯形的中位线定理,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案