精英家教网 > 初中数学 > 题目详情

比较大小,设a______b(”“”“=”).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

课题研究:现有边长为120厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
初三(1)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面进行了如下探索:
(1)方案①:把它折成横截面为直角三角形的水槽(如图1).
若∠ACB=90°,设AC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽(如图2).
若∠ABC=120°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小;
(2)假如你是该兴趣小组中的成员,请你再提供两种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面精英家教网面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•邢台一模)如图所示,一圆柱高AB为5cm,BC是底面直径,设底面半径长度为acm,求点P从A点出发沿圆柱表面移动到点C的最短路线.

方案设计
某班数学兴趣小组设计了两种方案:
图1是方案一的示意图,该方案中的移动路线的长度为l1,则l1=5+2a(cm);
图2是方案二的示意图,设l2是把圆柱沿AB侧面展开的线段AC的长度,则l2=
25+π2a2
25+π2a2
cm(保留π).
计算探究

①当a=3时,比较大小:l1
 l2(填“>”“=”或“<”);
②当a=4时,比较大小:l1
 l2(填“>”“=”或“<”);
延伸拓展
在一般情况下,设圆柱的底面半径为rcm.高为hcm.
①若l12=l22,求h与r之间的关系;
②假定r取定值,那么h取何值时,l1<l2
③假定r取定值,那么h取何值时,l1>l2

查看答案和解析>>

科目:初中数学 来源: 题型:022

比较大小,设a______b(”“”“=”).

查看答案和解析>>

同步练习册答案