精英家教网 > 初中数学 > 题目详情

【题目】如图,已知公路LAB两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD_____米.

【答案】50

【解析】

CD⊥直线l,由∠ACB=∠CAB30°,AB50mABBC50m,∠CBD60°,根据CDBCsinCBD计算可得.

如图,过点CCD⊥直线l于点D

∵∠BCD30°,∠ACD60°,

∴∠ACB=∠CAB30°,

AB100m

ABBC100m,∠CBD60°,

RtBCD中,∵sinCBD

CDBCsinCBD100×50m),

故答案是:50

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三辆汽车经过某收费站下高速时,在2个收费通道AB中,可随机选择其中的一个通过.

1)三辆汽车经过此收费站时,都选择A通道通过的概率是   

2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°∠A的平分线交BCDEAB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.

求证:(1AC⊙D的切线;(2AB+EB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为ABCD四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.

请你根据统计图解答下列问题:

1)参加比赛的学生共有____名;

2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;

3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.

(1)分别求出一次函数与反比例函数的表达式;

(2)过点BBCx轴,垂足为点C,连接AC,求ACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=12,P是边AB上一点,把PBC沿直线PC折叠,顶点B的对应点是点G,过点BBECG,垂足为E且在AD上,BEPC于点F.

(1)如图1,若点EAD的中点,求证:AEB≌△DEC;

(2)如图2,①求证:BP=BF;

②当AD=25,且AE<DE时,求cosPCB的值;

③当BP=9时,求BEEF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量()与销售单价(万元)之间存在着如图所示的一次函数关系

1)求关于的函数关系式.

2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图l、图2均为8×6的方格纸(每个小正方形的边长均为1),在方格纸中各有一条线段AB,其中点A、B均在小正方形的顶点上,请按要求画图:

(1)在图l中画一直角ABC,使得tan∠BAC=,点C在小正方形的顶点上;

(2)在图2中画一个ABEF,使得ABEF的面积为图1中ABC面积的4倍,点E、F在小正方形的顶点上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A110),点B06),点PBC边上的动点(点P不与点BC重合),经过点OP折叠该纸片,得点B′和折痕OP.设BP=t

)如图,当BOP=300时,求点P的坐标;

)如图,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m

)在()的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

同步练习册答案