精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,抛物线y=x2+bx+cx轴交于A(-10)B两点(AB左),y轴交于点C0-3).

1)求抛物线的解析式;

2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;

3)若点Ex轴上,点P在抛物线上.是否存在以BCEP为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】1;(2;(3P13-3),P23),P33.

【解析】试题分析:1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点轴交,则 可得到当面积有最大值时,四边形的面积最大值.

3)本题应分情况讨论:①过轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.

试题解析:(1)把代入

可以求得

2过点轴分别交线段轴于点

中,令,得

设直线的解析式为

可求得直线的解析式为:

S四边形ABCD

时, 有最大值

此时四边形ABCD面积有最大值

3)如图所示,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】三角形ABC的三边长分别为6 cm7.5 cm9 cm,三角形DEF的一边长为4 cm.当三角形DEF的另两边长是下列哪一组时,这两个三角形相似( )

A. 2 cm3 cm B. 4 cm5 cm C. 5 cm6 cm D. 6 cm7 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取值范围是(  )

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A21),B(﹣11),C(﹣1,﹣3),D2,﹣3),点P从点A出发,以每秒1个单位长度的速度沿ABCDA…的规律在图边形ABCD的边上循环运动,则第2019秒时点P的坐标为(  )

A. 11B. 01C. (﹣11D. 2,﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.

1)第一批脐橙每件进价多少元?

2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB,作图.

步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OAOB于点PQ

步骤2:过点MPQ的垂线交弧PQ 于点C

步骤3:画射线OC

则下列判断:①弧CQ=弧PC;②MCOA;③OP=PQ;④OC平分∠AOB

其中正确的为_______________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点, 则该三角形被剖分的网格中的结点个数和线段数分别是多少呢?

问题探究:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律

探究一:将一个边长为2的正三角形的三条边平分,连接各边中点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图1,连接边长为2的正三角形三条边的中点,从上往下:共有1+2+3=6个结点.边长为1的正三角形,第一层有1个,第二层有2个,共有1+2=3个,线段数为3×3=9条;边长为2的正三角形有1个,线段数为3条,总共有1+2+1=2×1+2+3=12条线段.

探究二:将一个边长为3的正三角形的三条边三等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

如图2,连接边长为3的正三角形三条边的对应三等分点,从上往下:共有1+2+3+4=10个结点.边长为1的正三角形,第一层有1个,第二层有2个,第三层有3个,共有1+2+3=6个,线段数为3×6=18条;边长为2的正三角形有1+2=3个,线段数为3×3=9条,边长为3的正三角形有1个,线段数为3条,总共有1+2+3+1+2+1=3×1+2+3+4=30条线段.

探究三:

请你仿照上面的方法,探究将边长为4的正三角形的三条边四等分(图3),连接各边对应的等分点,该三角形被剖分的网格中的结点个数和线段数分别是多少?

(画出示意图,并写出探究过程)

问题解决:

请你仿照上面的方法,探究将一个边长为nn≥2)的正三角形的三条边n等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?(写出探究过程)

实际应用:

将一个边长为30的正三角形的三条边三十等分,连接各边对应的等分点,则该三角形被剖分的网格中的结点个数和线段数分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的周长为20,对角线AC长为,点EF分别为ACBC边上的动点.

1)直接写出菱形ABCD的面积:_______

2)直接写出BE+EF的最小值_______;并在图中作出此时的点E和点F

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=kx+bk≠0)的图象经过点B20),与函数y=2x的图象交于点A,则不等式0kx+b2x的解集为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案