【题目】对于二次函数和一次函数,把 称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
【尝试】(1)当t=2时,抛物线 的顶点坐标为 ;
(2)判断点A (填是或否)在抛物线L上;
(3)n的值是 ;
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】二次函数是二次函数和一次函数的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【答案】【尝试】(1,-2) 是 n=6;【发现】 (2,0)、(﹣1,6);【应用】不是 理由见解析.
【解析】试题分析:
【尝试】
(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;
(2)将点A的坐标代入抛物线E上直接进行验证即可;
(3)已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n的值.
【发现】
将抛物线E展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.
【应用】
将【发现】中得到的两个定点坐标代入二次函数y=-3x2+5x+2中进行验证即可.
解:(1)将t=2代入抛物线E中,得:y=t(x2-3x+2)+(1-t)(-2x+4)=2x2-4x=2(x-1)2-2,
∴此时抛物线的顶点坐标为:(1,-2);
(2)点A在抛物线E上,
理由如下:∵将x=2代入y=t(x2-3x+2)+(1-t)(-2x+4),得 y=0,
∴点A(2,0)在抛物线E上.
(3)∵点B(-1,n)在抛物线E上,
∴将x=-1代入抛物线E的表达式中,
得:n=t(x2-3x+2)+(1-t)(-2x+4)=6.
∵将抛物线E的表达式展开,得:
y=t(x2-3x+2)+(1-t)(-2x+4)=t(x-2)(x+1)-2x+4
∴抛物线E必过定点(2,0)、(-1,6);
(4)不是.
∵将x=-1代入y=-3x2+5x+2,得y=-6≠6,
∴二次函数y=-3x2+5x+2的图象不经过点B.
∴二次函数y=-3x2+5x+2不是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”.
科目:初中数学 来源: 题型:
【题目】如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下关于0的说法:①0的相反数与0的绝对值都是0;②0的倒数是0;③0减去一个数,等于这个数的相反数;④0除以任何有理数仍得0.其中说法正确的有( )个
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.线段AB和线段BA表示的不是同一条线段B.x2y的系数是1,次数是2
C.多项式4x2y﹣2xy+1的次数是3D.射线AB和射线BA表示的是同一条射线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,点B的坐标为(2m,-m).
(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<m时,y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在Rt△ABC和Rt△DEF中,∠C=90°,∠F=90°,BC=EF.请你添加一个条件:_____________________,使△ABC≌△DEF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com