【题目】某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A处测得塔尖M的仰角为α,塔座N的仰角为β;乙在一楼B处只能望到塔尖M,测得仰角为θ(望不到底座),他们知道楼高AB=20m,通过查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;请你根据这几个数据,结合图形推算出铁塔高度MN的值.
【答案】铁塔的高度MN=40m.
【解析】
构造所给的三个角所在的直角三角形,利用相等的线段及相应的三角函数表示出MN,MD,ME,进而用MD,ME表示出楼高AB,求得相等的线段的长度,进而求得塔高即可.
如图,设地平线BD,水平线AE分别交直线MN与D,E.
显然AE=BD,不妨设为m,则在Rt△AEM中,ME=mtanα.
在Rt△AEN中,NE=mtanβ,
∴MN=m(tanα﹣tanβ).
在Rt△BDM中,MD=mtanθ,
而AB=DE=MD﹣ME=m(tanθ﹣tanα),
∴m=,
∴MN=.
∵AB=20,tanα=0.5723,tanβ=0.2191 tanθ=0.7489,
∴MN=≈40(m).
∴可测得铁塔的高度MN=40m.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数的图像记为,函数的图像记为,其中为常数,且,图像、,合起来得到的图像标记为.
(1)求图像与轴的交点坐标.
(2)当图像的最低点到轴距离为3时,求的值.
(3)当时,若点在图像上,求的值.
(4)点、的坐标分别为、,连接与图像有两个交点时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ;
探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正确的结论是( )
A.①③④ B.①②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=与x轴、y轴分别交于点B,C,抛物线y=过B,C两点,且与x轴的另一个交点为点A,连接AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:
(1)请写出:
算式⑤ ;
算式⑥ ;
(2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为和 (为整数),请说明这个规律是成立的;
(3)你认为“两个连续偶数的平方差能被8整除”这个说法是否也成立呢?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=20cm,AD=30cm,∠ABC=60°,点Q从点B出发沿BA向点A匀速运动,速度为2cm/s,同时,点P从点D出发沿DC向点C匀速运动,速度为3cm/s,当点P停止运动时,点Q也随之停止运动,过点P做PM⊥AD交AD于点M,连接PQ、QM.设运动的时间为ts(0<t≤6).
(1)当PQ⊥PM时,求t的值;
(2)设△PQM的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得△PQM的面积是ABCD面积的?若存在,求出相应t的值;若不存在,请说明理由;
(4)过点M作MN∥AB交BC于点N,是否存在某一时刻t,使得P在线段MN的垂直平分线上?若存在,求出相应t的值;若不存在,请说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com