【题目】如图,在中,,于点,和的角平分线相交于点,为边的中点,,则( )
A.125°B.145°C.175°D.190°
科目:初中数学 来源: 题型:
【题目】先阅读然后解决问题:
(阅读)如图(1),在ABCD中,过点D作DE⊥AB于点E沿DE线将△DEA剪切下来,并平移△DEA,使其拼接在△CE′B处这样,原来ABCD就变成一个矩形EE′CD.
(问题解决)如图(2),将△ABC通过剪切和拼接,得到一个矩形.要求:
(1)剪切线用实线,拼接图用虚线;
(2)说明剪下的图形是怎样运动拼接的;
(3)加注必要的字母,拼接后的非重合字母在原字母的右上角标注“′”,如:E′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一个等腰直角三角形沿斜边上的高剪下,与剩下部分能拼成一个平行四边形,如图(1).
(1)想一想,判断四边形是平行四边形的依据是_____________________________________.(用平行四边形的判定方法叙述)
(2)按上述方法做一做,请你拼一个与图(1)位置或形状不同的平行四边形。并在图(2)中面出示意图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)
问题(2):已知中,两边长分别是5,,若这个三角形是奇异三角形,则第三边长是_____________;
问题(3):如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.试说明:是奇异三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是( )
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件不能判定四边形ABCD是矩形的是( )
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA﹣PB|最大时,点P的坐标为( )
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
A. 18B. 9
C. 6D. 条件不够,不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com