【题目】如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.
(1)求∠EAF的度数;
(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.
【答案】(1)∠EAF=135°.(2)详见解析.
【解析】
(1)过点F作FM⊥AB并交AB的延长线于点M,只要证明△EBC≌△FME(AAS)即可解决问题;
(2)过点F作FG∥AB交BD于点G.首先证明四边形ABGF为平行四边形,再证明△FGM≌△DMC(AAS)即可解决问题;
(1)解:过点F作FM⊥AB并交AB的延长线于点M,
∵四边形ABCD是正方形,
∴∠B=∠M=∠CEF=90°,
∴∠MEF+∠CEB=90°,∠CEB+∠BCE=90°,
∴∠MEF=∠ECB,
∵EC=EF,
∴△EBC≌△FME(AAS)
∴FM=BE
∴EM=BC
∵BC=AB,
∴EM=AB,
∴EM﹣AE=AB﹣AE
∴AM=BE,
∴FM=AM,
∵FM⊥AB,
∴∠MAF=45°,
∴∠EAF=135°.
(2)证明:过点F作FG∥AB交BD于点G.
由(1)可知∠EAF=135°,
∵∠ABD=45°
∴∠EAF+∠ABD=180°,
∴AF∥BG,
∵FG∥AB,
∴四边形ABGF为平行四边形,
AF=BG,FG=AB,
∵AB=CD,
∴FG=CD,
∵AB∥CD,
∴FG∥CD,
∴∠FGM=∠CDM,
∵∠FMG=∠CMD
∴△FGM≌△CDM(AAS),
∴GM=DM,
∴DG=2DM,
∴BD=BG+DG=AF+2DM.
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发市场,草莓的批发价格是每箱元,苹果的批发价格是每箱
元.
(1)若李心批发草莓,苹果共箱,刚好花费
元,则他购买草莓、苹果各多少箱.
(2)李心有甲,乙两个店铺,每个店铺在同一时间段内都能售出草莓,苹果两种水果合计箱,并且每售出一箱草莓和苹果,甲店铺获毛利润分别为
元和
元,乙店铺获毛利润分别为
元和
元.现在,李心要将批发购进的
箱草莓,
箱苹果分配给每个店铺各
箱.设分配给甲店草莓
箱.
①根据信息填表:
草莓数量(箱) | 苹果数量(箱) | 合计(箱) | |
甲店 | |||
乙店 |
②设李心获取的总毛利润为元,
(1)求与
的函数关系式:
(2)若在保证乙店铺获得毛利润不少于元的前提下,应怎样分配水果,使总毛利润
最大,最大的总毛利润是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.
(1)若△CDE的周长为4,求AB的长;
(2)若∠ACB=100°,求∠DCE的度数;
(3)若∠ACB=a(90°<a<180°),则∠DCE=___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3)
(1)直接写出△ABC的面积为_________
(2)在图形中作出△ABC关于x轴的对称图形△A1B1C1
(3)若△DAB与△CAB全等(D点不与C点重合),则点D的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以点O为原点的直角坐标系中,一次函数y=-x+1的图象与x轴交于A,与y轴交于点B,点C在第二象限内且为直线AB上一点,OC=
AB,反比例函数y=
的图象经过点C,则k的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com