精英家教网 > 初中数学 > 题目详情
已知函数成正比例,成反比例,且当时,;当时,.(1)求的函数关系式;(2)当时,求的值.
(1)设y1=k1x,y2=,则y=k1x+
将x=1,y=4;x=2,y=5分别代入可求得k1=2,k2=2;
所以y与x的函数关系式:y=2x+
(2)把x=4代入y=2x+
得:y=8
首先根据正比例与反比例函数的定义分别设出函数解析式,用待定系数法求出y与x的函数关系式,然后再代入求值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次
第一档
第二档
第三档
每月用电量x(度)
0<x≤140
 
 
(2)小明家某月用电120度,需交电费       
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的函数关系式级自变量的取值范围;
(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了发展旅游经济,我市某风景区对门票采用灵活的售票方法吸引游客,门票的定价为每人50元,,非节日打a折售票,节假日按团队人数分段定价售票,即m人一下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人的部分的游客打b折售票,设某旅游团人数为x人,非节假日购票款为y(元),节假日购票款为y(元)。y 、y与x之间的函数图像如图所示

(1)观察图像可知a=  ,b=   ,m=   
(2)直接写出y, y与x之间的函数解析式
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团到该景区旅游,共付门票款1900元,A、B两个团队合计50人,求A、B两个团队各有多少人?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某工厂生产A、B两种产品共50件,其生产成本与利润如下表:
 
       A种产品
        B种产品
   成本 (万元/件)
          0.6
           0.9
   利润 (万元/件)
          0.2
           0.4
 
若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

以方程组的解为坐标的点(x,y)在第  象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为(     )
A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.

(1)求关于的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的距离为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.
(1)甲走完全程所用的时间为          小时;
(2)乙行走的速度为            
(3)当乙行走了多少时间,他们两人在途中相遇?

查看答案和解析>>

同步练习册答案