精英家教网 > 初中数学 > 题目详情
6、若点A(x,3)与点B(2,y)关于x轴对称,则(  )
分析:熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y).
解答:解:根据轴对称的性质,得x=2,y=-3.故选D.
点评:本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,∠BAC=90°,AB=AC=2
2
,⊙A的半径为1,如图所示.若点O在BC边上运动(与精英家教网点B、C不重合),设BO=x,△AOC的面积为y.
(1)求⊙A与△ABC重叠部分图形的面积(结果用π的式子表示);
(2)求y关于x的函数解析式,并写出函数自变量x的取值范围;
(3)以点O为圆心,BO长为半径作圆,求当⊙O与⊙A外切时,△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(
x1+x2
2
y1+y2
2
)

观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为
 

(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为
 
 

拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

查看答案和解析>>

科目:初中数学 来源:2007年广东省广州市白云区中考数学二模试卷(解析版) 题型:解答题

在△ABC中,∠BAC=90°,AB=AC=2,⊙A的半径为1,如图所示.若点O在BC边上运动(与点B、C不重合),设BO=x,△AOC的面积为y.
(1)求⊙A与△ABC重叠部分图形的面积(结果用π的式子表示);
(2)求y关于x的函数解析式,并写出函数自变量x的取值范围;
(3)以点O为圆心,BO长为半径作圆,求当⊙O与⊙A外切时,△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:2011年四川省成都市金堂县中考数学二模试卷(解析版) 题型:解答题

阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为
观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为______;
(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为______、______.
拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的旋转》(04)(解析版) 题型:解答题

(2010•内江)阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为
观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为______;
(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为______、______.
拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

查看答案和解析>>

同步练习册答案