精英家教网 > 初中数学 > 题目详情
已知:三点A(a,1)、B(3,1)、C(6,0),点A在正比例函数y=
1
2
x的图象上.
(1)求a的值;
(2)点P为x轴上一动点.
①当△OAP与△CBP周长的和取得最小值时,求点P的坐标;
②当∠APB=20°时,求∠OAP+∠PBC的度数.
(1)∵点A(a,1)在正比例函数y=
1
2
x的图象上,
∴a=2.
(2)①如图①,作点A关于x轴对称点A′,可得A′(2,-1).
连接A′B交x轴于点P.

设直线A′B的解析式为y=kx+b(k≠0),可得此直线的解析式为y=2x-5.
当y=0时,x=2.5.
当AP+BP取得最小值时,可得△OAP与△CBP周长的和取得最小值,此时点P的坐标为(2.5,0).
②如图②,设AA′交x轴于点K.连接OA′、OB、AB,作BM⊥OC于M.

∵A′K=AK=AB=1,∠OKA′=∠A′AB=90°,OK=AA′=2,
∴△OKA′≌△A′AB.(4分)
∴OA′=A′B,∠OA′K=∠ABA′.
∵在Rt△AA′B中,
∠ABA′+∠AA′B=90°,
∴∠OA′B=90°.
∴△OA′B为等腰直角三角形.
∴∠BOA′=∠BOC+∠A′OC=45°.
∵BM⊥OC,OM=MC=3,
∴OB=BC.
∴∠BOC=∠BCO.
∵∠AOC=∠A′OC,
∴∠AOC+∠BCO=45°.
如图③,当∠APB=20°时,
∠OAP+∠PBC
=360°-(∠AOC+∠BCO)-(∠APO+∠BPC)
=360°-45°-(180°-20°)=155°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠B=90°,∠C=30°,BC=6,沿DE折叠△CDE,使得C点与A点重合,折痕DE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在日常生活中,你经常会看到一些含有特殊数学规律的汽车车牌号码,例等,这些牌照中的5个数字都是关于中间的一个数字“对称”的,给人以对称美的享受,我们不妨把这样的牌照叫作“数字对称”牌照,如果让你负责制作以8或9开头且有5个数字的“数字对称”牌照,那么最多可制作(  )
A.2000个B.1000个C.200个D.100个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:
①BD=AD2+AB2;②△ABF≌△EDF;③
DE
AB
=
EF
AF
;④AD=BD•cos45°.
其中正确的一组是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCO是正方形,点C的坐标是(4,0).
(1)直接写出A、B两点的坐标:A______,B______;
(2)若E是BC上一点且∠AEB=60°,沿AE折叠正方形ABCO,折叠后点B落在平面内点F处,请画出点F并求出它的坐标;
(3)若E是直线BC上任意一点,问是否存在这样的点E,使正方形ABCO沿AE折叠后,点B恰好落在x轴上的某一点P处?若存在,请写出此时点P与点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角梯形ABCD中,ADBC,∠B=90°,将直角梯形ABCD沿CE折叠,使点D落在AB上的F点,若AB=BC=12,EF=10,∠FCD=90°,则AF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在矩形ABCD中,AB=6,AD=2
3
,点P是边BC上的动点(点P不与点B,C重合),过点P作直线PQBD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点.设CP=x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CPQ的度数.
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式.并求此时函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,P为BC的中点,试在CD边上找一点Q,使△APQ的周长最小.

查看答案和解析>>

同步练习册答案