精英家教网 > 初中数学 > 题目详情

【题目】杨梅是漳州的特色时令水果,杨梅一上市,某水果店的老板用1 200元购进一批杨梅,很快售完;该老板又用2 500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.

(1)第一批杨梅每件进价是多少元?

(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价-进价)

【答案】(1)120元.(2)至少打7折.

【解析】

(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;
(2)设剩余的杨梅每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.

解:(1)设第一批杨梅每件进价是x元,

解得

经检验,x=120是原方程的解且符合题意.

答:第一批杨梅每件进价为120元.

(2)设剩余的杨梅每件售价打y折.

解得y≥7.

答:剩余的杨梅每件售价至少打7折.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.

(1)求抛物线的解析式;

(2)当PO+PC的值最小时,求点P的坐标;

(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.

1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);

2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为_________cm

(第16题图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司举行周年庆典,决定订购一批印有公司logo的记事本赠送给客户,购买甲种记事本共花费3000元,购买乙种记事本共花费2100元,购买甲种记事本的数量是购买乙种记事本数量的2倍,且购买一个乙种记事本比购买一个甲种记事本多花20.

(1)求购买一个甲种记事本,一个乙种记事本各需多少元?

(2)由于公司业务的扩大,公司决定再次购买甲、乙两种记事本共40个,且乙种记事本不少于23个,预算金额不超过2400元,购买时恰逢该店对两种记事本的售价进行调整,甲种记事本售价比第一次购买时提高了10%,乙种记事本售价比第一次购买时降低了10%,请问该公司有哪几种方案购买这批记事本?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探究发现)

如图1,在△ABC中,点P是内角∠ABC和外角∠ACD的角平分线的交点,试猜想∠P与∠A之间的数量关系,并证明你的猜想.

(迁移拓展)

如图2,在△ABC中,点P是内角∠ABC和外角∠ACD的n等分线的交点,即∠PBC=∠ABC,∠PCD=∠ACD,

试猜想∠P与∠A之间的数量关系,并证明你的猜想.

(应用创新)

已知,如图3,AD、BE相交于点C,∠ABC、∠CDE、∠ACE的角平分线交于点P,∠A=35°,∠E=25°,则∠BPD=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.

(1)点D在边AB上时,证明:AB=FA+BD;

(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:

(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;

(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?

查看答案和解析>>

同步练习册答案