精英家教网 > 初中数学 > 题目详情
如图,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为(  )
分析:先标注字母,然后根据平移的性质判定△DEG,△BFH,△D′EM,△B′NF是等边三角形,根据等边三角形的每一条边都相等可得阴影部分的周长等于BD+B′D′,代入数据进行计算即可得解.
解答:解:如图,∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,
∴△DEG,△BFH,△D′EM,△B′NF是等边三角形,
∴GE=DG,HF=BH,FN=B′N,EM=D′M,
∴阴影部分的周长=GE+GH+HF+FN+MN+EM=DG+MN+BH+B′N+MN+D′M=BD+B′D′=1+1=2.
故选B.
点评:本题考查了等边三角形的性质,平移的性质,根据平移的性质用等边三角形的边长表示出阴影部分的周长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,是边长分别为4和3的两个等边三角形纸片ABC和CD′E′叠放在一起.
(1)操作:固定△ABC,将△CD′E′绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?试说明理由;
(2)操作:固定△ABC,若将△CD′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向以每秒1个单位长的速度平移,平移后的△CDE设为△PQR,如图3.探究:在图3中,除△ABC和△CDE外,还有哪个三角形是等腰三角形?写出你的结论并说明理由;
(3)探究:如图4,在(2)的条件下,将△PQR的顶点P移动至F点,求此时QH的长度.精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC为等边三角形,边长为1;△BCD是顶角为∠BDC且∠BDC=120°的等腰三角形.以D为顶点作一个60°的角,角的两边分别交AB,AC于M,N,延长AC至E点,使CE=BM,连接DE.
(1)图中有两个三角形是互相旋转而得到的吗?若有,指出这两个三角形,并指出旋转中心及旋转角的度数;
(2)图中有成轴对称图形的两个三角形吗?若有,请指出,并指明对称轴;
(3)求出△AMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、将两个等边△ABC和△DEF(DE>AB)如图所示摆放,点D是BC上的一点(除B、C点外).把△DEF绕顶点D顺时针旋转一定的角度,使得边DE、DF与△ABC的边(除BC边外)分别相交于点M、N.
(1)∠BMD和∠CDN相等吗?
(2)画出使∠BMD和∠CDN相等的所有情况的图形;
(3)在(2)题中任选一种图形说明∠BMD和∠CDN相等的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•廊坊一模)圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了
m
2πr
m
2πr
圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了
R+r
r
R+r
r
圈;

(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了
R-r
r
R-r
r
圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1是边长分别为4
3
和3的两个等边三角形纸片ABC和CDE叠放在一起.
(1)固定△ABC,将△CDE绕点C顺时针旋转30°得到△CDE,连接AD、BE、CE的延长线交AB于点F(图2),线段BE与AD之间有怎样的大小关系?证明你的结论;
(2)固定△CDE,将△ABC移动,使顶点C落在CE的中点G,边BG交DE于点M,边AG交DC于点N,求证:CN•EM=EG•CG;
(3)将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图4);探究:设△PQR移动时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

同步练习册答案