精英家教网 > 初中数学 > 题目详情
如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;
(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的公共点。
(1)y=-x+12(2)当a=5时,b最小值=(3)见解析
(1)y=-x+12。
(2)当a=5时,b最小值=
(3)猜想:直线DE与抛物线
证明:由(1)可知,DE所在直线为y=-x+12。
代入抛物线,得
化简得x2-24x+144=0,所以△=0。
所以直线DE与抛物线
作法一:延长OF交DE于点H。
作法二:在DB上取点M,使DM=CD,过M作MH⊥BC,交DE于点H。
(1)当F落在OA上时,四边形OCDF和四边形DGEB都是正方形,因此CD=DF=OC=6,即D点的坐标为(6,6),而GF=DF-DG=DF-(BC-CD)=6-(10-6)=2,因此E点的坐标为(10,2).然后可用待定系数法求出直线DE的解析式.
(2)根据D、E的坐标可知:CD=a,BE=6-b,BD=BC-CD=10-a,可根据相似三角形△OCD和△DBE得出的关于OC、CD、DB、BE的比例关系式求出b、a的函数关系式.然后可根据函数的性质得出b的最小值及对应的a的值.
(3)可将(1)中得出的直线DE的解析式联立抛物线的解析式,看得出的一元二次方程的根的判别式△的值与0的关系即可得出交点的个数.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,点B坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b2﹣4ac>0.其中正确的结论是【   】

A.①④      B.①③      C.②④      D.①②

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与它的对称轴相交于点,与轴交于,与轴正半轴交于
(1)求这条抛物线的函数关系式;
(2)设直线轴于是线段上一动点(点异于),过轴交直线,过轴于,求当四边形的面积等于时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(的左侧),且点坐标为.平行于轴的直线点.

(1)求一次函数与二次函数的解析式;
(2)判断以线段为直径的圆与直线的位置关系,并给出证明;
(3)把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点.当为何值时,过三点的圆的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线与轴交于点两点,与轴交于点为直径作过抛物线上一点的切线切点为并与的切线相交于点连结并延长交于点连结

(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形的面积为求直线的函数关系式;
(3)抛物线上是否存在点,使得四边形的面积等于的面积?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的部分对应值如下表:


















二次函数图象的对称轴为      对应的函数值       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间(单位:秒)的函数关系式是,那么小球运动中的最大高度   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数的图象经过点,则的值为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①a+b+c>0;②a-c<0;③b2-4ac>0;④b<2a;⑤abc>0,
其中正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案