精英家教网 > 初中数学 > 题目详情
13.如图,点P在线段AB上,PD⊥AB,点C在线段PD上,连结BC,以CB,CD为邻边构造□BCDE,若AD=DE,AP=PC.
(1)求证:△APD≌△CPB;
(2)若PC=3CD,AD=10,求PD的长.

分析 (1)由垂直的定义得到∠APD=∠CPB=90°,由平行四边形的性质得到BC=DE,于是得到结论;
(2)根据已知条件得到AP=3CD,PD=4CD,根据勾股定理即可得到结论.

解答 (1)证明:∵PD⊥AB,
∴∠APD=∠CPB=90°,
∵四边形BCDE是平行四边形,
∴BC=DE,
∵AD=DE,
∴AD=BC,
在Rt△APD与Rt△CPB中,$\left\{\begin{array}{l}{AP=CP}\\{AD=BC}\end{array}\right.$,
∴Rt△APD≌Rt△CPB;
(2)解:∵PC=3CD,
∴AP=3CD,PD=4CD,
∵AP2+PD2=AD2
∴(3CD)2+(4CD)2=102
∴CD=2,
∴PD=8.

点评 本题考查了全等三角形的判定和性质,平行四边形的性质,勾股定理,熟练掌握全等三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,双曲线y=$\frac{2}{x}$(x>0),y=$\frac{12}{x}$(x>0),P、Q为y轴正半轴上两点,设P点的坐标为(0,a-2),PQ=4,分别过P、Q两点作x轴的平行线交两支曲线于C、D、A、B(如图)
(1)若CD=3AB,求a的值;
(2)连结PA、QD,若PA⊥QD,求a的值;
(3)当四边形PQBC为矩形时,
①求a的值;
②在射线PS上从C点向右依次截取C1C=C2C1=…=CkCk-1=PC,分别过C1,C2,…Ck作线段C1B1,C2B2…CkBk与QT垂直,垂足为B1,B2…Bk,问是否存在这样的正整数k使线段Ck-3Bk-3与双曲线y=$\frac{k}{x}$有交点?若存在,请求出正整数k;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需48元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:($\frac{{{x^2}-2x+1}}{{{x^2}-x}}$+$\frac{{{x^2}-4}}{{{x^2}+2x}}$)÷$\frac{1}{x}$,且x为满足-3<x<2的整数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知,如图,在△ABC中,∠ACB=90°,AB=5cm,BC=4cm,CD⊥AB于D,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作EF⊥AB于点F,延长EF交CB的延长线于点G,且∠ABG=2∠C.
(1)求证:EF是⊙O的切线;
(2)若sin∠EGC=$\frac{3}{5}$,⊙O的半径是3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)$\sqrt{9}$-$\sqrt{(-6)^{2}}$-$\root{3}{-27}$;
(2)|$\sqrt{6}$-$\sqrt{3}$|+|$\sqrt{6}$-3|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,下面给出了求∠AGD的度数的过程,将此补充完整并在括号里填写依据.
【解】∵EF∥AD(已知)
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠3(等式性质或等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)
又∵∠BAC=70°(已知)
∴∠AGD=110°(等式性质)

查看答案和解析>>

同步练习册答案