精英家教网 > 初中数学 > 题目详情
18、如图,在△ABC中,AB=AC,BE、CF是中线,则由
SAS
可得△AFC≌△AEB.
分析:由已知AB=AC,BE、CF是中线,可得AF-AE,这样△AFC与△AEB中,有两边及它们的夹角对应相等,符合SAS,于是可得答案.
解答:解:∵在△ABC中,AB=AC,BE、CF是中线
∴AF=BF=AE=EC
∵AB=AC,AE=AF,∠A=∠A
∴△AFC≌△AEB(SAS).
因为该判定是两边角且该角为两边的夹角,所以用的是SAS.
故填SAS.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件在三角形中的位置来选择方法是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案