8£®ÔÚÒ»¸ö²»Í¸Ã÷µÄ²¼´üÖÐ×°ÓÐÈý¸öСÇò£¬Ð¡ÇòÉÏ·Ö±ð±êÓÐÊý×Ö-5¡¢1¡¢5£¬ËüÃdzýÁËÊý×Ö²»Í¬Í⣬ÆäËû¶¼ÍêÈ«Ïàͬ£®
£¨1£©Ëæ»úµØ´Ó²¼´üÖÐÃþ³öÒ»¸öСÇò£¬ÔòÃþ³öµÄÇòΪ±êÓÐÊý×Ö1µÄСÇòµÄ¸ÅÂÊΪ$\frac{1}{3}$£»
£¨2£©Ð¡ÀöÏÈ´Ó²¼´üÖÐËæ»úÃþ³öÒ»¸öСÇò£¬¼ÇÏÂÊý×Ö×÷ΪaµÄÖµ£®ÔÙ½«´ËÇò·Å»Ø¡¢½ÁÔÈ£¬È»ºóÓÉС»ªÔÙ´Ó²¼´üÖÐËæ»úÃþ³öÒ»¸öСÇò£¬¼ÇÏÂÊý×Ö×÷ΪbµÄÖµ£¬ÇëÓÃÊ÷״ͼ»ò±í¸ñÁгöµãa£¬bËùÓпÉÄÜÖµ£¬²¢Çó³ö×ø±êµã£¨a£¬b£©ÔÚµÚÈýÏóÏ޵ĸÅÂÊ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓøÅÂʹ«Ê½Çó½â£»
£¨2£©»­Ê÷״ͼչʾËùÓÐ9ÖֵȿÉÄܵĽá¹ûÊý£¬ÔÙ¸ù¾ÝµÚÈýÏóÏÞµãµÄ×ø±êÌØÕ÷ÕÒ³öµã£¨a£¬b£©ÔÚµÚÈýÏóÏ޵Ľá¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó½â£®

½â´ð ½â£º£¨1£©Ëæ»úµØ´Ó²¼´üÖÐÃþ³öÒ»¸öСÇò£¬ÔòÃþ³öµÄÇòΪ±êÓÐÊý×Ö1µÄСÇòµÄ¸ÅÂÊ=$\frac{1}{3}$£»
¹Ê´ð°¸Îª$\frac{1}{3}$£»
£¨2£©»­Ê÷״ͼ£º

¹²ÓÐ9ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖÐ×ø±êµã£¨a£¬b£©ÔÚµÚÈýÏóÏ޵Ľá¹ûÊýΪ1£¬
ËùÒÔ×ø±êµã£¨a£¬b£©ÔÚµÚÈýÏóÏ޵ĸÅÂÊ=$\frac{1}{9}$£®

µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÀûÓÃÁÐ±í·¨»òÊ÷״ͼ·¨Õ¹Ê¾ËùÓеȿÉÄܵĽá¹ûn£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬È»ºóÀûÓøÅÂʹ«Ê½¼ÆËãʼþA»òʼþBµÄ¸ÅÂÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1£¬¡÷AHCÖУ¬¡ÏAHC=90¡ã£¬½«¡÷AHCÈƵãHÄæʱÕëÐýת90¡ã£¬µÃµ½¡÷BHD£¨µãB¡¢D·Ö±ðÊǵãA¡¢CµÄ¶ÔÓ¦µã£©£¬ÈôBC=4£¬tanC=3£®
£¨1£©ÇóÏ߶ÎCHµÄ³¤£»
£¨2£©½«¡÷BHDÈƵãHÐýת£¬µÃµ½¡÷EHF£¨µãB£¬D·Ö±ðÓÚµãE£¬F¶ÔÓ¦£©
¢ÙÈçͼ2£¬µ±µãFÂäÔÚÏ߶ÎACÉÏʱ£¬Á¬½ÓAE£¬·Ö±ðÇóCFºÍAEµÄ³¤£»
¢ÚÈçͼ3£¬µ±¡÷EHFÊÇÓÉ¡÷BHDÈƵãHÄæʱÕëÐýת30¡ãµÃµ½Ê±£¬ÉèÉäÏßCFÓëAEÏཻÓÚµãG£¬Á¬½ÓGH£¬ÊÔ̽¾¿Ï߶ÎGHÓëEFÖ®¼äÂú×ãµÄµÈÁ¿¹Øϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÒ»¸ö²»Í¸Ã÷µÄºÐ×ÓÖÐ×°ÓÐ2¸ö°×Çò£¬n¸ö»ÆÇò£¬ËüÃdzýÑÕÉ«²»Í¬Í⣬ÆäÓà¾ùÏàͬ£®Èô´ÓÖÐËæ»úÃþ³öÒ»¸öÇò£¬ËüÊÇ»ÆÇòµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬Ôòn=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬?ABCDµÄ¶Ô³ÆÖÐÐÄÊÇÔ­µãO£¬µãA¡¢DµÄ×ø±ê·Ö±ðΪ£¨1£¬3£©¡¢£¨-3£¬-3£©£¬¶¯µãPÔÚ±ßABÉÏ£¬¹ýµãPµÄ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó½»±ßCDÓÚµãQ£¬Á¬½ÓPQ£®
£¨1£©ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©µ±µãPÊDZßABµÄÖеãʱ£¬Çó¶ÔÓ¦µÄ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©Ö±½Óд³öͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺$\frac{1}{tan30¡ã}$-$\sqrt{12}$-|1-$\sqrt{3}$|-2¡Á£¨5-¦Ð£©0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÃæÊÇСÁÖ×öµÄ4µÀ×÷ÒµÌ⣺£¨1£©2ab+3ab=5ab£»£¨2£©2ab-3ab=-1£»£¨3£©2ab•3ab=6ab£»£¨4£©2ab¡Â3ab=$\frac{2}{3}$£®×ö¶ÔÒ»ÌâµÃ2·Ö£¬ÔòËû¹²µÃµ½£¨¡¡¡¡£©
A£®2·ÖB£®4·ÖC£®6·ÖD£®8·Ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬µãA¡¢B¡¢CÔÚ¡ÑOÉÏ£¬µãBÊÇ$\widehat{AC}$µÄÖе㣬¡ÏABC=¡ÏAOC£¬½«ËıßÐÎAOCBÈƵãA°´Ë³Ê±Õë·½ÏòÐýתһ¶¨½Ç¶Èºó£¬µãCÂäÔÚÔ²ÉϵĵãD´¦£¬Á¬½áOD£®
£¨1£©ÇóÖ¤£ºËıßÐÎAOCBΪÁâÐΣ»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2£¬ÇóͼÖÐÒõÓ°²¿·ÖµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬BDÊÇ¡ÑOµÄÖ±¾¶£¬ËıßÐÎABCDÊÇ¡ÑOµÄÄÚ½ÓËıßÐΣ¬ÇÒAB=AC£¬AH¡ÍBDÓÚµãH£¬ÑÓ³¤CDÖÁµãE£®
£¨1£©ÇóÖ¤£º¡ÏADE=¡ÏADB£»
£¨2£©ÇóÖ¤£ºBH=HD+CD£»
£¨3£©ÈôDC=3DH£¬ÊÔÇótan¡ÏADEºÍsin¡ÏBDCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®°Ñ0.0000052ÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®0.52¡Á10-5B£®5.2¡Á10-5C£®5.2¡Á10-6D£®52¡Á10-5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸