精英家教网 > 初中数学 > 题目详情
10.如图,把△ABC纸片沿DE折叠,使点A落在四边形BCDE的内部,则∠A与∠1、∠2的关系为(  )
A.∠A=∠1+∠2B.3∠A=2(∠1+∠2)C.3∠A=2∠1+∠2D.2∠A=∠1+∠2

分析 根据折叠的性质∠FED=∠AED,∠FDE=∠ADE,根据三角形内角和定理和邻补角的定义即可表示出∠A、∠1、∠2之间的关系.

解答 解:根据题意得∠FED=∠AED,∠FDE=∠ADE,
由三角形内角和定理可得,∠FED+∠EDF=180°-∠F=180°-∠A,
∴∠AEF+∠ADF=2(180°-∠A),
∴∠1+∠2=360°-(∠AEF+∠ADF)=360°-2(180°-∠A)=2∠A.
所以2∠A=∠1+∠2.
故选D.

点评 此题主要考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,P为边长为4的正方形ABCD的对角线AC上动点(不与A、C重合),过P作直线m、n,分别与AD、AB平行,与正方形各边分别交于E、F、G、H,在以下判断中,不正确的是(  )
A.P点变化时,四边形EFGH面积保持不变
B.P点变化时,六边形DEFBGH面积有最大值12$\sqrt{2}$
C.点P位于正方形ABCD的中心时,DE=2
D.P点变化时,六边形DEFBGH周长保持不变

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,已知长方形纸带ABCD,AB∥CD,AD∥BC,∠BFE=70°,将纸带沿EF折叠后,点C、D分别落在H、G的位置,再沿BC折叠图2.
(1)在图1中,∠AEG=40度;
(2)在图1中,求∠BMG的度数;
(3)在图2中,小明用量角器量得∠MFH=40°,试求∠EFN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=$\sqrt{3}$,∠B=60°,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于(  )
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.菱形的面积是12cm2,两条对角线的长度比为2:3,则它的两条对角线分别为4cm,6cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)因式分解:(x+1)(x+2)+$\frac{1}{4}$.
(2)化简:$\frac{1}{a-1}$+$\frac{1}{(a-1)(a-2)}$+$\frac{1}{(a-2)(a-3)}$+…+$\frac{1}{(a-99)(a-100)}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.中国古代对勾股定理有深刻的认识.
(1)三国时代吴国数学家赵爽第一次对勾股定理加以证明:用四个全等的图1所示的直角三角形拼成一个图2所示的大正方形,中间空白部分是一个小正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,求( a+b)2的值.
(2)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其边长的方法为:第一步$\frac{s}{6}$=m;第二步:$\sqrt{m}$=k;第三步:分别用3,4,5乘以k,得三边长.当面积S等于150时,请用“积求勾股法”求出这个直角三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,在矩形ABCD中,AC,BD相交于点O,H是AD上一动点(H与A,D不重合),且HE⊥AC于点E,HF⊥BD于点F,AG⊥BD于点G,求证:HE+HF=AG.

查看答案和解析>>

同步练习册答案