【题目】如图,矩形ABCD的对角线上有动点E,连结DE,边BC上有一定点F,连接EF,已知AB=3cm,AD=4cm,设A,E两点间的距离为cm,D,E两点间的距离为cm,E,F两点间的距离为cm.
小胜根据学习函数的经验,分别对函数, 随自变量x的变化而变化的规律进行了探究.下面是小胜的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,得到x与y的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
/cm | 4.00 | 3.26 | 2.68 | _______ | 2.53 | 3.00 |
/cm | 4.50 | 3.51 | 2.51 | 1.53 | 0.62 | 0.65 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数的图像:
(3)结合函数图像,解决问题:当DE>EF时,AE的长度范围约为_________________cm.
科目:初中数学 来源: 题型:
【题目】中国魏晋时期的数学家刘徽首创“割圆术”,奠定了中国圆周率计算在世界上的领先地位.刘徽提出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,由此求得圆周率的近似值.如图,设半径为的圆内接正边形的周长为,圆的直径为,当时,,则当时,______.(结果精确到0.01,参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调査(问卷调査表如图所示),将调査结果整理后绘制例图1、图2两幅均不完整的统计图表.
最受欢迎的校本课程调查问卷
您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.
选项 | 校本课程 | |
A | 3D打印 | |
B | 数学史 | |
C | 诗歌欣赏 | |
D | 陶艺制作 |
校本课程 | 频数 | 频率 |
A | 36 | 0.45 |
B | 0.25 | |
C | 16 | b |
D | 8 | |
合计 | a | 1 |
请您根据图表中提供的信息回答下列问题:
(1)统计表中的a= ,b= ;
(2)“D”对应扇形的圆心角为 度;
(3)根据调査结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一不透明的袋子中装有四张标有数字的卡片,这些卡片除数字外其余均相同.小明同学按照一定的规则抽出两张卡片,并把卡片上的数字相加,下图是他所画的树状图的一部分.
(1)由上图分析,该游戏规则是:第一次从袋子中随机抽出一张卡片后 (填“放回”或“不放回”),第二次随机再抽出一张卡片;
(2)帮小明同学补全树状图,并求小明同学两次抽到卡片上的数字之和为偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠ACB=90°,AC=12,BC=5,P 是边 AB 上的动点(不与点 B 重合),将△BCP 沿 CP 所在的直线翻折,得到△B'CP,连接 B'A,B'A 长度的最小值是 m,B'A 长度的最大值是 n,则 m+n 的值等于 ______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB的端点均在格点上. 按要求在图①,图②,图③中画图.
(1)在图①中,以线段AB为斜边画一个等腰直角三角形,且直角的顶点为格点;
(2)在图②中,以线段AB为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;
(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,抛物线()与x轴相交于A,B两点,与y轴相交于点C,顶点为D.
(1)当a=1时,抛物线顶点D的坐标为________,AB=_________;
(2)AB的长是否与a有关?说明你的理由;
(3)若将抛物线()沿y轴折叠,得到另一抛物线,其顶点为D,如图②.连接CD,CD和DD.
①若△CDD为等边三角形时,则a=______;
②若△CDD为等腰直角三角形时,则a=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=kx+b与双曲线y=(x>0)交于A,B两点,与x轴交于点C,与y轴交于点E,已知点A(1,3),点C(4,0).
(1)求直线l1和双曲线的解析式;
(2)将△OCE沿直线l1翻折,点O落在第一象限内的点H处,求点H的坐标;
(3)如图,过点E作直线l2:y=3x+4交x轴的负半轴于点F,在直线l2上是否存在点P,使得S△PBC=S△OBC?若存在,请直接写出所有符合条件的点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,∠C=90°,E为BC边中点.
(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).
(2)连结DE,求证:DE为⊙O的切线;
(3)若AC=5,DE=,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com