精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,顶点为(3,4)的抛物线交 y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.
解:(1)∵抛物线的顶点为(3,4),∴可设此抛物线的解析式为:
∵此抛物线过点A(0,-5),∴,解得
∴此抛物线的解析式为:,即
(2)此时抛物线的对称轴与⊙C相离。证明如下:
,即,得x=1或x=5,
∴B(1,0),C(5,0)。
令x=1,得,∴A(0,-5)。
如图,过点C作CE⊥BD于点E,作抛物线的对称轴交x轴于点F,

∵AB⊥BD,∴∠ABO=900-∠ABO=∠CBE。
∵∠AOB=∠BEC=900,∴△AOB∽△BEC。

又∵OB=1,OA=5,∴根据勾股定理,得
又∵BC=4,∴,即
∵CF=2,∴,即
∴抛物线的对称轴与⊙C相离。
(3)存在。
假设存在满足条件的点
∵点在抛物线上,∴



①当∠A=900时,在中,由勾股定理,得 ,
,整理,得
,解得,∴
∴点P为(7,-12)或(0,-5)(舍去)。
②当∠C=900时,在中,由勾股定理,得
,整理,得
,解得,∴
∴点P为(2,3)或(5,0)(舍去)。
综上所述,满足条件的点P的坐标为(7,-12)或(2,3)。
(1)由于已知抛物线的顶点为(3,4),故应用待定系数法,设顶点式求解。
(2)过点C作CE⊥BD于点E,应用△AOB∽△BEC求得CE的长,与点C到抛物线的对称轴的距离比较即可。
(3)用点P的横坐标表示三边的长,分∠A=900和∠C=900两种情况讨论即可。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.

(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,抛物线轴的交点的个数是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A.a>0 B.当﹣1<x<3时,y>0
C.c<0 D.当x≥1时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知两点均在抛物线上,点是该抛物线的顶点,若,则的取值范围是【   】
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是
A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中点坐标为.由勾股定理得,所以A、B两点间的距离公式为
注:上述公式对A、B在平面直角坐标系中其它位置也成立.
解答下列问题:

如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.
(1)求A、B两点的坐标及C点的坐标;
(2)连结AB、AC,求证△ABC为直角三角形;
(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

查看答案和解析>>

同步练习册答案