【题目】已知∠AOB=3∠BOC,射线0D平分∠AOC,若∠BOD=30°,则∠BOC的度数为________.
【答案】15°或30°.
【解析】
根据题意先画出图形,分两种情况讨论∠BOC在∠AOB内部和∠BOC在∠AOB外部时,先根据∠AOB=3∠BOC,可设∠BOC=x,则∠AOB=3x,再根据角平分线的定义,将各个角用含有x的式子表示,最后根据∠BOD=30°,即可求出x的值,从而得出∠BOC的度数.
如图1,当∠BOC在∠AOB内部时,
∵∠AOB=3∠BOC,
∴设∠BOC=x,则∠AOB=3x,
∴∠AOC=∠AOB-∠BOC=2x,
∵OD平分∠AOC,
∴∠DOC=∠AOC=x,
∴∠BOD=∠DOC+∠BOC=2x,
∵∠BOD=30°,
∴2x=30°,
∴x=15°,
即∠BOC=15°;
如图2,当∠BOC在∠AOB外部时,
∵∠AOB=3∠BOC,
∴设∠BOC=x,则∠AOB=3x,
∴∠AOC=∠AOB+∠BOC=4x,
∵OD平分∠AOC,
∴∠DOC=∠AOC=2x,
∴∠BOD=∠DOC-∠BOC=x,
∵∠BOD=30°,
∴x=30°,
即∠BOC=30°.
∴∠BOC的度数为:15°或30°.
故答案为:15°或30°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠ABC=50°,∠ACB=80°,延长 CB 至 D,使 DB=BA,延长 BC 至 E,使 CE=CA,连接 AD 和 AE,求∠D,∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在质量检测中,从每盒标准质量为125克的酸奶中,抽取6盒,结果如下:
编号 | 1 | 2 | 3 | 4 | 5 | 6 |
质量(克) | 126 | 127 | 124 | 126 | 123 | 125 |
差值(克) | +1 |
(1)补全表格中相关数据;
(2)请你利用差值列式计算这6盒酸奶的质量和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)|-2|÷(-)+(-5)×(-2); (2)(-+)×(-24);
(3)15÷(-+); (4)(-2)2-|-7|-3÷(-)+(-3)3×(-)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.
(1)该记者本次一共调査了名行人;
(2)求图1中④所在扇形的圆心角,并补全图2;
(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8. ①连结OE,求△OBE的面积.
②求弧AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P,Q同时出发,用t(s)表示移动的时间,当t=________s时,△POQ是等腰三角形;当t=_______s时,△POQ是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A. 角的内部到角的两边的距离相等的点在角的平分线上
B. 角平分线上的点到这个角两边的距离相等
C. 三角形三条角平分线的交点到三条边的距离相等
D. 三角形三条垂直平分线的交点到三个定点的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com