【题目】问题发现:
(1)如图1,内接于半径为4的,若,则_______;
问题探究:
(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;
解决问题
(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.
【答案】(1);(2)四边形ABCD的面积最大值是;(3)存在,其最大值为.
【解析】
(1)连接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根据OA=4,利用余弦公式求出AH,即可得到AB的长;
(2)连接AC,由得出AC=,再根据四边形的面积= ,当DH+BM最大时,四边形ABCD的面积最大,得到BD是直径,再将AC、BD的值代入求出四边形面积的最大值即可;
(3)先证明△ADM≌△BMC,得到△CDM是等边三角形,求得等边三角形的边长CD,再根据完全平方公式的关系得出PD=PC时PD+PC最大,根据CD、∠DPC求出PD,即可得到四边形周长的最大值.
(1)连接OA、OB,作OH⊥AB于H,
∵,
∴∠AOB=120.
∵OH⊥AB,
∴∠AOH=∠AOB=,AH=BH=AB,
∵OA=4,
∴AH=,
∴AB=2AH=.
故答案为:.
(2)∵∠ABC=120,四边形ABCD内接于,
∴∠ADC=60,
∵的半径为6,
∴由(1)得AC=,
如图,连接AC,作DH⊥AC,BM⊥AC,
∴四边形的面积= ,
当DH+BM最大时,四边形ABCD的面积最大,连接BD,则BD是的直径,
∴BD=2OA=12,BD⊥AC,
∴四边形的面积=.
∴四边形ABCD的面积最大值是
(3)存在;
∵千米,千米,,
∴△ADM≌△BMC,
∴DM=MC,∠AMD=∠BCM,
∵∠BCM+∠BMC=180-∠B=120,
∴∠AMD+∠BMC=120,
∴∠DMC=60,
∴△CDM是等边三角形,
∴C、D、M三点共圆,
∵点P在弧CD上,
∴C、D、M、P四点共圆,
∴∠DPC=180-∠DMC=120,
∵弧的半径为1千米,∠DMC=60,
∴CD=,
∵,
∴,
∴,
∴当PD=PC时,PD+PC最大,此时点P在弧CD的中点,交DC于H ,
在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,
∴,
∴四边形的周长最大值=DM+CM+DP+CP=.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.
(1)如图①,当时,求点的坐标;
(2)如图②,当点落在的延长线上时,求点的坐标;
(3)当点落在线段上时,求点的坐标(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是⊙的弦,交于点,过点的直线交的延长线于点,且是⊙的切线.
(1)判断的形状,并说明理由;
(2)若,求的长;
(3)设的面积是的面积是,且.若⊙的半径为,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是( )
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com