【题目】如图,只改变正方形的形状,得到四边形,且,则四边形与正方形的面积的比是( )
A.1:1B.2:3C.:2D.3:4
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c与x轴交于A、B两点,A(﹣5,0),与y轴交于C(0,﹣5),并且对称轴x=﹣3.
(1)求抛物线的解析式;
(2)P在x轴上方的抛物线上,过P的直线y=x+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;
(3)点D为抛物线对称轴上一点,
①当△ACD是以AC为直角边的直角三角形时,求D点坐标;
②若△ACD是锐角三角形,求点D的纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在2019年植树节这一天,某校组织300名七年级学生,200名八年级学生,100名九年级学生参加义务植树活动.图甲是根据植树情况绘制成的条形统计图.
请根据题中提供的信息解答下列问题.
(1)参加植树的学生平均每人植树多少棵?
(2)图2是小明同学尚未完成的各年级植树情况的扇形统计图,请你把它补充完整(要求标注圆心角度数);
(3)若该种树苗在正常情况下的成活率为85%,则今后还需补种多少棵树?(补种树苗的成活率也为85%)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.
已知:直线l及直线l上一点P.
求作:直线PQ,使得PQ⊥l.
作法:如图,
①在直线l上取一点A(不与点P重合),分别以点P,A为圆心,AP长为半径画弧,两弧在直线l的上方相交于点B;
②作射线AB,以点B为圆心,AP长为半径画弧,交AB的延长线于点Q;
③作直线PQ.
所以直线PQ就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接BP,
∵ = = =AP,
∴点A,P,Q在以点B为圆心,AP长为半径的圆上.
∴∠APQ=90°( ).(填写推理的依据)
即PQ⊥l.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生对新闻,体育,娱乐,动画四类电视节目的喜爱情况,进行了统计调查.随机调查了某班所有同学最喜欢的节目(每名学生必选且只能选择四类节目中的一类),并将调查结果绘成如下不完整的统计图.
根据两图提供的信息,回答下列问题:
(1)本次调查了多少人?
(2)请补全条形统计图;
(3)根据抽样调查结果,若该校有1000名学生,请你估计该校有多少名学生最喜欢“新闻”类节目;
(4)在全班同学中,甲,乙,丙,丁等同学最喜欢体育类节,班主任打算从甲,乙,丙,丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲,乙两同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系的坐标轴上按如下规律取点:在轴正半轴上,在轴正半轴上,在轴负半轴上,在轴负半轴上,在轴正半轴上,......,且......,设......,有坐标分别为,......,.
(1)当时,求的值;
(2)若,求的值;
(3)当时,直接写出用含为正整数)的式子表示轴负半轴上所取点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为10,tanB=3,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以每件10元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其函数图像如图所示.
(1)求商场每天销售这种商品的销售利润y(元)与每件的销售价x(元)之间的函数解析式;
(2)试判断,每件商品的销售价格在什么范围内,每天的销售利润随着价格的提高而增加.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com