精英家教网 > 初中数学 > 题目详情
阅读并
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,则有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,则有x1+x2=-
4
3
,x1x2=-
7
3

(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.
(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a

理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,
那么由求根公式可知,x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a

于是有x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有x1+x2=-
b
a
x1x2=
c
a


(2)x1、x2是方程x2+(2k+1)x+k2-2=0的两个实数根
∴x1+x2=-(2k+1),x1x2=k2-2,
又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x22-2x1x2
∴[-(2k+1)]2-2×(k2-2)=11
整理得k2+2k-3=0,
解得k=1或-3,
又∵△=[-(2k+1)]2-4(k2-2 )≥0,解得k≥-
9
4

∴k=1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2013•武汉模拟)先阅读并完成第(1)题,再利用其结论解决第(2)题.
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1,x2,则有x1+x2=-
b
a
,x1•x2=
c
a
.这个结论是法国数学家韦达最先发现并证明的,故把它称为“韦达定理”.利用此定理,可以不解方程就得出x1+x2和 x1•x2的值,进而求出相关的代数式的值.
请你证明这个定理.
(2)对于一切不小于2的自然数n,关于x的一元二次方程x2-(n+2)x-2n2=0的两个根记作an,bn(n≥2),
请求出
1
(a2-2)(b2-2)
+
1
(a3-2)(b3-2)
+…+
1
(a2011-2)(b2011-2)
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空解题:
(1)方程:x2+x-2=0的根是:x1=
2
2
,x2=
1
1
,则x1+x2=
3
3
,x1x2=
2
2

(2)方程2x2-7x+3=0的根是:x1=
3
3
,x2=
1
2
1
2
,则x1+x2=
7
2
7
2
,x1x2=
3
2
3
2

(3)方程x2-4x-5=0的根是:x1=
5
5
,x2=
-1
-1
,则x1+x2=
4
4
,x1x2=
-5
-5

(4)如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数)的两根为x1,x2,根据以上(1)(2)(3)你能否猜出:x1+x2,x1x2与系数a、b、c有什么关系?请写出来你的猜想并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空,再解答后面的相关问题:
(1)方程x2-x-2=0的根是x1=2,x2=-1,则x1+x2=1,x1•x2=-2
(2)方程2x2-3x-5=0的根是x1=-1,x2=
5
2
,则x1+x2=
3
2
x1x2=-
5
2

(3)方程3x2-2x-1=0的根是x1=
-
1
3
-
1
3
,x2=
1
1
,则x1+x2=
2
3
2
3
,x1•x2=
-
1
3
-
1
3

根据对以上(1)、(2)、(3)的观察、思考,你能否猜出:如果关于x的一元二次方程mx2+nx+p=0(m≠0且m、n、p为常数且n2-4mp≥0)的两根x1、x2,那么x1+x2、x1•x2与系数m、n、p有什么关系?请写出你的猜想并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并解答问题:
在一元二次方程ax2+bx+c=0(a≠0)中,如果b2-4ac≥0时,那
么它的两个根是x1=
-b+
b2-4ac
2a
x2=
-b-
b2-4ac
2a
所以x1+x2=
(-b+
b2-4ac
)+(-b-
b2-4ac
)
2a
=
-2b
2a
=-
b
a
x1x2=
(-b+
b2-4ac
)•(-b-
b2-4ac
)
2a•2a
=
b2-(b2-4ac)
4a2
=
c
a

由此可见,一元二次方程的两根的和、两根的积是由一元二次方程的系数a、b、c确定的.运用上述关系解答下列问题:
(1)已知一元二次方程2x2-6x-1=0的两个根分别为x1、x2,则x1+x2=
3
3
,x1x2=
-
1
2
-
1
2
1
x1
+
1
x2
=
-6
-6

(2)已知x1、x2是关于x的方程x2-x+a=0的两个实数根,且
x
2
1
+
x
2
2
=7
,求a的值.

查看答案和解析>>

同步练习册答案