精英家教网 > 初中数学 > 题目详情

【题目】计划拨款9万元从厂家购进50台电视机已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.

若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;

若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;

若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.

【答案】(1)①甲、乙两种型号的电视机各购25台,②甲种型号的电视机购35台,丙种型号的电视机购15台;(2)为使销售时获利最多,应选择第种进货方案;(3)有四种进货方案:1、购进甲种电视27台,乙种电视20台,丙种电视3台,2、购进甲种电视29台,乙种电视15台,丙种电视6台,3、购进甲种电视31台,乙种电视10台,丙种电视9台,4、购进甲种电视33台,乙种电视5台,丙种电视12台.

【解析】1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是甲乙,乙丙,甲丙三种情况进行讨论.求出正确的方案;
(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案;
(3)本题可先设两种电视的数量为未知数,然后根据三种电视的总量为50台,表示出另一种电视的数量,然后根据购进电视的费用总和为9万元,得出所设的两种电视的二元一次方程,然后根据自变量的取值范围,得出符合条件的方案.

设购进甲种x台,乙种y台.则有:,解得

设购进乙种a台,丙种b台.则有:,解得不合题意,舍去此方案.

设购进甲种c台,丙种e台.则有:,解得:

通过列方程组解得有以下两种方案成立:

甲、乙两种型号的电视机各购25台.

甲种型号的电视机购35台,丙种型号的电视机购15台;

方案获利为:

方案获利为:

所以为使销售时获利最多,应选择第种进货方案;

设购进甲种电视x台,乙种电视y台,则购进丙种电视的数量为:台.

化简整理,得

又因为、y、,且均为整数,

所以上述二元一次方程只有四组解:

因此,有四种进货方案:

1、购进甲种电视27台,乙种电视20台,丙种电视3台,

2、购进甲种电视29台,乙种电视15台,丙种电视6台,

3、购进甲种电视31台,乙种电视10台,丙种电视9台,

4、购进甲种电视33台,乙种电视5台,丙种电视12台.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题。
(1)(﹣2)1﹣|﹣ |+(3.14﹣π)0+4cos45°
(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一楼房AB后有一假山,其坡度为i=1: ,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,A(15)B(10)C(43)

(1) 求出ABC的面积

(2) 在图形中作出ABC关于y轴的对称图形A1B1C1,并写出A1B1C1的坐标

(3) 是否存在一点PACAB的距离相等,同时到点A、点B的距离也相等.若存在保留作图痕迹标出点P的位置,并简要说明理由;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDEAC上一点,∠ABE=∠AEB,∠CDE=∠CED

求证:BEDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD中,AB6 cmBC8 cm,点EBC边上一点,连接AE,并将AEB沿AE折叠,得到AEB′,以CEB′为顶点的三角形是直角三角形时,BE的长为____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题。

(1)计算:(﹣1)2015+( 3﹣(π﹣3.1)0

(2)计算:(﹣2x2y)23xy÷(﹣6x2y)

(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=- ,y=3.

(4)用整式乘法公式计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,4)两点,与x轴交于另一点B,

(1)求抛物线的解析式;
(2)求P在第一象限的抛物线上,P点的横坐标为t,过点P向x轴做垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式并求出m的最大值;
(3)在(2)的条件下,抛物线上一点D的纵坐标为m的最大值,连接BD,在抛物线是否存在点E(不与点A,B,C重合)使得∠DBE=45°?若不存在.请说明理由;若存在请求E点的坐标.

查看答案和解析>>

同步练习册答案