精英家教网 > 初中数学 > 题目详情
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.

(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
解:(1)证明:连接AC,

∵BD,AC是菱形ABCD的对角线,∴BD垂直平分AC。
∴AE=EC。
(2)点F是线段BC的中点。理由如下:
在菱形ABCD中,AB=BC,
又∵∠ABC=60°,∴△ABC是等边三角形。
∴∠BAC=60°。
∵AE=EC,∠CEF=60°,∴∠EAC=∠BAC=30°。
∴AF是△ABC的角平分线。
∵AF交BC于F,∴AF是△ABC的BC边上的中线。
∴点F是线段BC的中点。

试题分析:(1)连接AC,根据菱形的对角线互相垂直平分可得BD垂直平分AC,再根据线段垂直平分线上的点到线段两端点的距离相等即可得证。
(2)先判定出△ABC是等边三角形,根据等边三角形的每一个角都是60°可得∠BAC=60°,再根据等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和求出∠EAC=30°,从而判断出AF是△ABC的角平分线,再根据等边三角形的性质可得AF是△ABC的BC边上的中线,从而解得。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.

(1)△ABC的面积等于    
(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2。

(l)若CF=2,AE=3,求BE的长;
(2)求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是
A.8B.6C.4D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=【   】
A.12B.9C.6D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:

(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年四川资阳11分)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.

(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为(  )
A.16B.C.22D.8

查看答案和解析>>

同步练习册答案