精英家教网 > 初中数学 > 题目详情

证明:当αβ为锐角时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、在△ABC中,∠ABC=45°,H是高AD,BE的交点.
(1)当∠BAC为锐角时(如图①),求证:BH=AC;
(2)当∠BAC为钝角时(如图②),其他条件不变,请画出符合要求的图形.这时BH=AC还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知△ABC,分别以BC、AC为边向形外作正方形BDEC,正方形ACFG,过C点的直线MN垂直于AB于N,交EF于M,
(1)当∠ACB=90°时,试证明:①EF=AB;②M为EF的中点;

(2)当∠ACB为锐角或钝角时,①EF与AB的数量关系为
当∠ACB为锐角时,EF>AB,当∠ACB为钝角时,EF<AB
(分情况说明);
②M还是EF的中点吗?请说明理由.(选择当∠ACB为锐角或钝角时的一种情况来说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)如图1,若AB=AE,∠DAC=∠EAB=60°,则∠BFC=
120°
120°

(2)如图2,若∠ABC=30°,△ACD是等边三角形,BC=4,AB=3.求BD的长;
(3)如图3,若∠ACD为锐角,作AH⊥BC于H,当BD2=4AH2+BC2时,判定∠DAC与∠ABC的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•葫芦岛一模)(1)如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系;
(2)如图2,若四边形ABCD是平行四边形,AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E.
①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论;
②当0°<∠A<
120
120
°时,上述结论成立;当
120
120
°≤∠A<180°时,上述结论不成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:
(1)如果AB=AC,∠BAC=90°.
(i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为
BD⊥CE,且BD=CE.
BD⊥CE,且BD=CE.

(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么?

(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,BC⊥CE(点D不与点C,B重合)?试画出相应图形,写出你的探究结果(不用证明).

查看答案和解析>>

同步练习册答案