精英家教网 > 初中数学 > 题目详情
如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.
(1)求证:DE为半圆O的切线;
(2)若GE=1,BF=
3
2
,求EF的长.
(1)证明:连接OD,如图,
∵AB为半圆O的直径,D为AC的中点,
∴OD为△ABC的中位线,
∴ODBC,
∵DE⊥BC,
∴DE⊥DO,
又∵点D在圆上,
∴DE为半圆O的切线;

(2)∵AB为半圆O的直径,
∴∠AFB=90°,
而DE⊥BC,
∴∠GEB=∠GFE=90°,
∵∠BGE=∠EGF,
∴△BGE△EGF
GE
GB
=
GF
GE

∴GE2=GF•GB=GF(GF+BF)
∵GE=1,BF=
3
2

∴GF=
1
2

在Rt△EGF中,EF=
GE2-GF2
=
3
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.5cm为半径的圆与AB的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,CA,CB分别与⊙O相切于点D,B,圆心O在AB上,AB与⊙O的另一交点为E,AE=2,⊙O的半径为1,则BC的长为(  )
A.
2
B.2
2
C.
2
2
D.
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若过点D作DGBE交EF于点G,过G作GHDE交DF于点H,则易知△DGH是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,AE=
3

(1)求
EF
的长;
(2)若AD=
3
+5
,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.
求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角坐标系中直线AB交x轴,y轴于点A(4,0)与B(0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过______秒后动圆与直线AB相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,在正方形ABCD中,AB=1,
AC
是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=
5
6
时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

查看答案和解析>>

同步练习册答案