解:①设方程的另一个根为x
1,则:
x
1+1+

=2,
∴x
1=1-

.
x
1•(1+

)=-m,
(1-

)(1+

)=-2=-m,
∴m=2.
故另一个根是:1-

,m=2.
②△=4+4m>0,
m>-1.
∴当m>-1时,方程总有两个不等实数根.
故命题“若m≤2,则方程x
2-2x-m=0总有两个不相等的实数根”是假命题.
如当m=-2时,方程为x
2-2x+2=0,此时△=4-8=-4<0,方程没有实数根.
分析:①由两根之和可以求出方程的另一个根,由两根之积可以求出m的值.②用一元二次方程根的判别式证明命题的真假,然后用具体的数字说明.
点评:本题考查的是一元二次方程根与系数的关系和根的判别式,①由两根之和可以求出方程的另一个根,两根之积可以求出m的值.②用判别式可以求出方程有两个不相等的实数根时m的取值范围,可以证明命题是假命题,然后用具体的数字说明.