精英家教网 > 初中数学 > 题目详情

(本小题满分14分)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.

(1)求∠OAB的度数.

(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?

(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.

(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.

 

 

(1)∠OAB=30°

(2)t=3时,PM与⊙O‘相切

(3)

(4)当t=2,t=3.6,t=-18时,△APQ是等腰三角形.

解析:解:(1)在Rt△AOB中:

tan∠OAB=

∴∠OAB=30°

(2)如图10,连接O‘P,O‘M. 当PM与⊙O‘相切时,有∠PM O‘=∠PO O‘=90°,

   △PM O‘≌△PO O‘

由(1)知∠OBA=60°

∵O‘M= O‘B

∴△O‘BM是等边三角形

∴∠B O‘M=60°可得∠O O‘P=∠M O‘P=60°

∴OP= O O‘·tan∠O O‘P =6×tan60°=

又∵OP=t

t=,t=3

即:t=3时,PM与⊙O‘相切.

(3)如图9,过点Q作QE⊥x于点E

   ∵∠BAO=30°,AQ=4t

   ∴QE=AQ=2t

   AE=AQ·cos∠OAB=4t×

∴OE=OA-AE=-t

   ∴Q点的坐标为(-t,2t)

   S△PQR= S△OAB -S△OPR -S△APQ -S△BRQ

           =

 =

 =   (

   当t=3时,S△PQR最小=

   (4)分三种情况:如图11.

1当AP=AQ1=4t时,

∵OP+AP=

t+4t=

∴t=

或化简为t=-18

2当PQ2=AQ2=4t时

 过Q2点作Q2D⊥x轴于点D,

∴PA=2AD=2A Q2·cosA=t

t+t =

∴t=2

3当PA=PQ3时,过点P作PH⊥AB于点H

 AH=PA·cos30°=(-t)·=18-3t

AQ3=2AH=36-6t

得36-6t=4t,

∴t=3.6

综上所述,当t=2,t=3.6,t=-18时,△APQ是等腰三角形.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25.(本小题满分14分)

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

① 试求平移后的抛物线的解析式;

② 试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分14分)
已知:如图,抛物线与y轴交于点C(0,), 与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;
(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存  在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年广东省萝岗区初中毕业班综合测试数学卷 题型:解答题

(本小题满分14分)
如图1,抛物线y轴交于点AE(0,b)为y轴上一动点,过点E的直线与抛物线交于点BC.
 
【小题1】(1)求点A的坐标;
【小题2】(2)当b=0时(如图2),求的面积。
【小题3】(3)当时,的面积大小关系如何?为什么?
【小题4】(4)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(内蒙古赤峰卷)数学 题型:解答题

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

①  试求平移后的抛物线的解析式;

②  试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案