【题目】如图,已知抛物线经过点和点,点C为抛物线与y轴的交点.
求抛物线的解析式;
若点E为直线BC上方抛物线上的一点,请求出面积的最大值.
在条件下,是否存在这样的点,使得为等腰三角形?如果有,请直接写出点D的坐标;如果没有,请说明理由.
【答案】(1).(2)当时,面积取最大值,最大值为.(3)点D的坐标为、、、或
【解析】分析:根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;
过点E作轴,交BC于点F,利用二次函数图象上点的坐标特征可找出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点E的坐标为,则点F的坐标为,进而可得出EF的长度,利用三角形的面积公式可得出,配方后利用二次函数的性质即可求出面积的最大值;
分、、三种情况考虑,根据等腰三角形的性质结合两点间的距离公式,即可得出关于m的一元二次或一元一次方程,解之即可得出结论.
详解:将、代入,
得:,解得:,
抛物线的解析式为.
过点E作轴,交BC于点F,如图1所示.
当时,,
点C的坐标为.
设直线BC的解析式为,
将、代入,得:
,解得:,
直线BC的解析式为.
设点E的坐标为,则点F的坐标为,
,
,
当时,面积取最大值,最大值为.
由可知点E的坐标为
为等腰三角形分三种情况如图:
当时,有,
解得:,,
点D的坐标为或;
当时,有,
解得:,
点D的坐标为;
当时,有,
解得:,,
点D的坐标为或
综上所述:当点D的坐标为、、、或时,为等腰三角形.
科目:初中数学 来源: 题型:
【题目】观察下列等式:
①sin30°=,cos60°=;
②sin45°=,cos45°=;
③sin60°=,cos30°=.
(1)根据上述规律,计算sin2α+sin2(90°-α)= .
(2)计算:sin21°+sin22°+sin23°+…+sin289°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在四等分的转盘上依次标有“0元”、“10元”、“30元”、“50元”字样,购物每满300元可以转动转盘2次,每次转盘停下后,顾客可以获得指针所指区域相应金额的购物券指针落在分界线上不计次数,可重新转动一次,一个顾客刚好消费300元,并参加促销活动,转了2次转盘.
求出该顾客可能落得购物券的最高金额和最低金额;
请用列表法或画树状图法求出该顾客获购物金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品.现有甲、乙两家商店出售两种同样的笔记本和钢笔.他们的定价相同:笔记本定价为每本25元,钢笔每支定价6元,但是他们的优惠方案不同,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠.已知七年级需笔记本20本,钢笔x支(大于20支).问:
(1)在甲店购买需付款 元,在乙店购买需付款 元;
(2)若x=30,通过计算说明此时到哪家商店购买较为合算?
(3)当x=40时,请设计一种方案,使购买最省钱?算出此时需要付款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材母题 点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.
(1)用含有x的式子表示S,写出x的取值范围,画出函数S的图象;
(2)当点P的横坐标为5时,△OPA的面积为多少?
(3)△OPA的面积能大于24吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于点B,且四边形BCOE是平行四边形。
(1)BC是⊙O的切线吗?若是,给出证明:若不是,请说明理由;
(2)若⊙O半径为1,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行数
3,9,27,81…①
1,3,9,27…②
2,10,26,82…③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)设x,y,z分别为第①②③ 行的2019个数,求的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com