【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,3)
(1)求这个二次函数的表达式并直接写出顶点坐标;
(2)若P是第一象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.设点P的横坐标为t
①求线段PM的最大值;
②S△PBM:S△MHB=1:2时,求t值;
③当△PCM是等腰三角形时,直接写点P的坐标.
【答案】(1)(1,4)(2)①②③当△PCM是等腰三角形时,点P的坐标为(2,3)或(3﹣,﹣2+4)或(1,4).
【解析】
设函数表达式为y=ax2+bx+c,将A(﹣1,0),B(3,0),C(0,3)代入即可求;
①先求直线BC的表达式,再设点P的横坐标为t,然后将PM的长表示成函数顶点式即可求;
②将S△PBM:S△MHB=1:2转化成底之比MH=2PM,再利用P、M的坐标,列出等式,求得两个值,再经化简即可得;
③分三种情况PC=PM、PC=CM、PM=CM求得t的值,再检验,即可得.
(1)将A(﹣1,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:
,解得,
∴二次函数的表达式为y=﹣x2+2x+3.
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴二次函数图象的顶点坐标为(1,4).
(2)①设直线BC的表达式为y=mx+n(m≠0),
将B(3,0),C(0,3)代入y=mx+n,得:
,解得:,
∴直线BC的表达式为y=﹣x+3.
∵点P的横坐标为t(0<t<3),
∴点P的坐标为(t,﹣t2+2t+3),点M的坐标为(t,﹣t+3),
∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,
∴线段PM的最大值为.
②∵点P的坐标为(t,﹣t2+2t+3),点M的坐标为(t,﹣t+3),
∴点H的坐标为(t,0),
∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,MH=﹣t+3.
∵△PBM和△MHB等高,S△PBM:S△MHB=1:2,
∴MH=2PM,即﹣t+3=﹣2t2+6t,
解得:t1=,t2=3(不合题意,舍去),
∴当S△PBM:S△MHB=1:2时,t的值为.
③∵点P的坐标为(t,﹣t2+2t+3),点M的坐标为(t,﹣t+3),点C的坐标为(0,3),
∴PM=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CM=,PC=.
当PM=PC时,有﹣t2+3t=,
∵0<t<3,
∴原方程可整理为:2t﹣4=0,
解得:t=2,
∴点P的坐标为(2,3);
当PM=CM时,有﹣t2+3t=t,
解得:t1=0(舍去),t2=3﹣,
∴点P的坐标为(3﹣,﹣2+4);
当CM=PC时,有t=,
∵0<t<3,
∴原方程可整理为:t2﹣4t+3=0,
解得:t1=1,t2=3(舍去),
∴点P的坐标为(1,4).
综上所述:当△PCM是等腰三角形时,点P的坐标为(2,3)或(3﹣,﹣2+4)或(1,4).
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
①AD和EF互相垂直平分;
②AE=AF;
③当∠BAC=90°时,AD=EF;
④DE是AB的垂直平分线.
其中正确的是_________________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在“我运动,我快乐”的技能比赛培训活动中,在相同条件下,对甲、乙两名同学的“单手运球”项目进行了5次测试,测试成绩(单位:分)如下:根据右图判断正确的是( )
A.甲成绩的平均分低于乙成绩的平均分;
B.甲成绩的中位数高于乙成绩的中位数;
C.甲成绩的众数高于乙成绩的众数;
D.甲成绩的方差低于乙成绩的方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).
(1)求直线l1:的函数表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
(1)如图,当点E在线段BC上时,∠BDF=α.
①按要求补全图形;
②∠EBF=______________(用含α的式子表示);
③判断线段 BF,CF,DF之间的数量关系,并证明.
(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在x轴上是否存在点E,使以点B,C,E为顶点的三角形为等腰三角形?如果存在,直接写出E点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】第二届全国青年运动会将于2019年8月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:
①∠AEB的度数为______;
②线段AD,BE之间的数量关系为______.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com