科目:初中数学 来源:数学教研室 题型:044
小学时,有的同学已了解了把循环小数化为分数的一般规律,我们运用一元一次方程知识也能将循环小数化为分数。
··
如:将0.12化为分数。
·· ··
设0.12为x,则100x=12.12,得方程
· ··
解得,即0.12=
·
又如:将0.35化为分数
· ·
同样可设x=0.35,则10x=3.55,得方程
· ·
解得,即0.35=
··
(1)将0.43化为分数;
(2)将0.32化为分数。
查看答案和解析>>
科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013
反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).
这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:
例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.
解答:=|k|
=|k|
故=
例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=|k|=,
=|k|=
=|k|=
S1=S2=S3,故选A.
例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲线在第三象限
∴k>0∴k=6
∴所以反比例函数的解析式为y=.
根据是述意义,请你解答下题:
如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小关系不能确定
查看答案和解析>>
科目:初中数学 来源:数学教研室 题型:044
如图所示,已知:四边形ABCD中,AB=DC、AC=BD、AD≠BC,求证:四边形ABCD是等腰梯形。
证明:过点D作DE∥AB,交BC于E,则∠ABE=∠1。 ①
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB. ②
∴∠ABC=∠DCB. ③
∴∠1=∠DCB. ④
∴AB=DC=DE。 ⑤
∴四边形ABED是平行四边形。 ⑥
∴AD∥BC, ⑦
BE=AD. ⑧
又∵AD≠BC,∴BE≠BC.
∴点E、C是不同的点,DC不平行AB. ⑨
又∵AB=CD,∴四边形ABCD是等腰梯形。 ⑩
读后完成下列各小题。
(1)证明过程是否有错误?如有错在第几步上。答:______________。
(2)作DE∥AB的目的是________________________。
(3)有人认为第9步是多余的,你的看法是______________。
(4)判断四边形ABED为平行四边形的依据是______________。
(5)判断四边形ABCD是等腰梯形的依据是______________。
(6)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?你的意见是______________。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形纸片ABCD中,BC=4,AB=3,点P是BC边上的动点(点P不与点B、C重合).现将△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分线,交AB于点E.设BP= x,BE= y,则下列图象中,能表示y与x的函数关系的图象大致是 ( )
A. B.
n C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com