精英家教网 > 初中数学 > 题目详情

【题目】如图,在半⊙O中,AB是直径,点D是⊙O上一点,点C的中点,CEAB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CECB于点PQ,连接AC,关于下列结论:①∠BAD=ABC;②GP=GD;③点P是△ACQ的外心;④AC2=CQCB,其中结论正确的是______

【答案】②③④

【解析】

由于弧AC与弧BD不一定相等,根据圆周角定理可知①错误,选项①错误;连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为弧CE的中点,得到两条弧相等,再由C为弧AD的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ与三角形ABC相似,根据相似得比例得到AC2=CQCB,选项④正确.

解:∵在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,

∴弧AC=CD≠BD

∴∠BAD≠ABC,选项①错误;

连接BD,如图所示:

GD为圆O的切线,

∴∠GDP=ABD

AB为圆O的直径,∴∠ADB=90°

CEAB,∴∠AFP=90°

∴∠ADB=AFP,又∠PAF=BAD

∴△APF∽△ABD

∴∠ABD=APF,又∠APF=GPD

∴∠GDP=GPD

GP=GD,选项②正确;

∵直径ABCE

A为弧CE的中点,即弧AE=AC

C为弧AD的中点,

∴弧AC=CD

∴弧AE=CD

∴∠CAP=ACP

AP=CP

AB为圆O的直径,∴∠ACQ=90°

∴∠PCQ=PQC

PC=PQ

AP=PQ,即PRtACQ斜边AQ的中点,

PRtACQ的外心,选项③正确;

连接CD,如图所示:

∵弧AC=CD

∴∠B=CAD

又∵∠ACQ=BCA

∴△ACQ∽△BCA

=,即AC2=CQCB,选项④正确,

综上可知正确的选项序号有②③④,

故答案为:②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是(  )

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等边三角形,OBC的中点,作⊙OAC相切于点D

1)求证:AB与⊙O相切;

2)延长ACE,使得CEAC,连接BE交⊙O与点FM,若AB4,求FM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角的余弦值为,点在射线上,,点的内部,且.过点的直线分别交射线、射线于点.点在线段上(点不与点重合),且

1)如图1,当时,求的长;

2)如图2,当点在线段上时,设,求关于的函数解析式并写出函数定义域;

3)联结,当相似时,请直接写出的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小华设计了一个探索杠杆平衡的实验:在一根匀质的木杆中点O左侧固定位置B处悬挂重物A,在中点O的右侧用一个弹簧秤向下拉木杆,改变弹簧秤与点O的距离x(单位:厘米),观察弹簧秤的示数y(单位:牛)的变化情况,实验数据记录如下:

x(单位:厘米)

10

15

20

25

30

y(单位:牛)

30

20

15

12

10

1)请写出一个符合表格中数据x关于y的函数关系;

2)当弹簧秤的示数为30牛时,弹簧秤与点O的距离是多少厘米?随着弹簧秤与O点的距离不断减小,弹簧秤的示数将发生怎样的变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD,AB=6,DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF.以下结论:①∠BAF=BCF; ②点EAB的距离是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正确的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,函数y=的图像与xy轴分别交于点AB.AB为直径作M.

1)求AB的长;

2)点DM上任意一点,且点D在直线AB上方,过点DDHAB,垂足为H,连接BD.

①当BDH中有一个角等于BAO两倍时,求点D的坐标;

②当DBH=45°时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】油井A位于油库P南偏东75°方向,主输油管道AP=12km,一新建油井B位于点P的北偏东75°方向,且位于点A的北偏西15°方向.

(1)求∠PBA;

(2)求A,B间的距离;

(3)要在AP上选择一个支管道连接点C,使从点B到点C处的支输油管道最短,求这时BC的长.(结果保留根号)

查看答案和解析>>

同步练习册答案