精英家教网 > 初中数学 > 题目详情
如图所示是二次函数y=-x2+4x图象上的一段,其中0≤x≤4、若矩形ABCD的两个顶点A,B落在x轴上,另外两个顶点C,D落在函数图象上,则矩形ABCD的周长能否恰好为8?若能,请求出C,D两点坐标;若不能,请说明理由.
假设周长恰好是8,设点A的横坐标为x,
∵y=-x2+4x,
∴顶点横坐标为-
4
2×(-1)
=2,
∴点B的横坐标为2+(2-x)=4-x,
∴AB=4-x-x=4-2x;
∴D点纵坐标为-x2+4x,
即AD=-x2+4x;
∴AD+AB=-x2+4x+(4-2x)=
1
2
×8,
∴x=0或2;
∴当x=0时,-x2+4x=0,D和C点纵坐标为0,构不成矩形.
∴当x=2时,-x2+4x=4,只有一个最高点存在,同样构不成矩形,
综合可知,与能构成矩形矛盾,故不存在.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某大学的校门是一抛物线水泥建筑物,大门的地面宽度为6米,两侧距地面2米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为4米,则校门的高为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.
(1)根据图象确定a、b、c的符号,并说明理由;
(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,且∠ACB=90°.以AB所在直线为轴,过点C且垂直于AB的直线为轴建立直角坐标系,已知AO=4,OB=1.
(1)分别求出A、B、C各点的坐标;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)如果⊙O1的半径是5,问这条抛物线的顶点是否落在两圆连心线O1O2上?如果在,请证明;如果不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,抛物线y=x2-x-2过A、B、C三点,在对称轴上存在点P,以P、A、C为顶
点三角形为直角三角形.则点P的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

世纪广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管,喷水最高点A离地面为3米.此时A点离喷水口水平距离为
1
2
米,在如图所示直角坐标系中,这支喷泉的函数关系式是______.(不要求指出自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

涪陵榨菜是重庆市农村经济中产销规模最大、品牌知名度最高、辐射带动能力最强的特色支柱产业.某知名榨菜企业为顺应市场需求推出了“五味榨菜”礼盒,成本为20元/盒.年销售量y(万盒)与售价x(元/盒)之间满足一次函数关系,其图象如图所示.
(1)结合图象求y与x之间的函数关系;
(2)求“五味榨菜”礼盒的年获利w(万元)与x之间的函数关系,并求当售价为多少元时可以获得最大利润,最大利润是多少万元?
(3)去年,公司一直按照(2)中获得最大利润时的售价进行销售,今年在保持售价不变的基础上,公司发力品牌营销,决定拿出部分资金进行广告宣传.经调查发现:①每年有11万盒产品供给固定客户,其余产品全部被潜在客房购买;②若广告投入为a万元,则潜在客户的购买量将是去年购买量的m倍,则m=-
1
900
(a-30)2+2
;③受公司生产规模及资金限制,公司的年产量不超过28万盒,广告投入不超过32万元.问公司在广告上投入多少资金可以使公司获得最大利润,最大利润为多少万元?(利润=总销售额-总成本-广告费)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用长8m的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是(  )
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

同步练习册答案