【题目】综合与探究
问题情境
在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”.如图,在平面直角坐标系中,四边形是矩形,点,点,点.
操作发现
以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(1)如图①,当点落在边上时,求点的坐标;
继续探究
(2)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
拓展探究
(3)如图①,点是轴上任意一点,点是平面内任意一点,是否存在点使以、、、为顶点的四边形是菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2)①见解析;②;(3)存在,,,,
【解析】
(1)根据矩形的性质得到OB=AC=3,OA=BC=5,∠C=90°,根据旋转变换的性质得到AD=OA=5,根据勾股定理求出CD,得到点D的坐标;
(2)①根据旋转变换的性质得到OA=DA,∠AOB=∠ADE=90°,利用HL定理证明△ADB≌△AOB;
②根据全等三角形的性质得到BD=BO=AC,根据△BDH≌△ACH,得到DH=CH,根据勾股定理求出CH,得到点H的坐标;
(3)分四种情况进行讨论:①当四边形ADNM为菱形,且点N在点D左侧时;②当四边形ADNM为菱形,且点N在点D右侧时;③当四边形ADMN为菱形时,④当四边形ANDM为菱形时,根据菱形的性质即可求解.
(1)如图①中,
∵,,
∴,,
∵四边形是矩形,
∴,,,
∵矩形是由矩形旋转得到,
∴,
在中,,
∴,
∴
(2)①如图②中,
由四边形是矩形,得到,
点在线段上,
,
由(1)可知,,又,,
∴
②∵,
∴,
又在矩形中,,
∴,
∴,
∴,设,则,
在中,∵,
∴,
∴,
∴,
∴.
(3)存在,
①当四边形ADNM为菱形,且点N在点D左侧时,
∵AD=5,
∴ND=AD=AM=5,
又BD=1,
∴BN=5-1=4,
∵点M在x轴上,
∴DN∥AM,
∴N(-4,3)
②当四边形ADNM为菱形,且点N在点D右侧时,
∵AD=5,
∴ND=AD=AM=5,
又BD=1,
∴BN=5+1=6,
∵点M在x轴上,
∴DN∥AM,
∴N(6,3)
③当四边形ADMN为菱形时,
∵点M在x轴上,
∴点D与点N关于x轴对称,
∵D(1,3),
∴N(1,-3)
④当四边形ANDM为菱形时,则MN⊥AD,
∵AM∥DC,点M在x轴上,
∴点N在BC上,DN=AN,
设CN=a,则DN=AN=4-a,
∴,即,解得:a=,
∴BN=,
故
综上所述:,,,
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为.双曲线的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )
A. 当a=1时,函数图象过点(-1,1)
B. 当a=-2时,函数图象与x轴没有交点
C. 若a>0,则当x≥1时,y随x的增大而减小
D. 若a<0,则当x≤1时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相较于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,则S△BPD=;其中正确的是( )
A.①②③④B.②③C.①②④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AD∥BC,∠A=90°,BD=DC,AB=6,AD=8,点P、Q分别为BC、AD上的动点,连接PQ,与BD相交于点O.
(1)当∠1=∠2时,求证:∠DOQ=∠DPC;
(2)当(1)的条件下,求证:DQ·PC=BD·DO;
(3)如果点P由点B向点C移动,每秒移动2个单位,同时点Q由点D向点A移动,每秒移动1个单位,设移动的时间为t秒,是否存在某一时刻,使得△BOP为直角三角形,如果存在,请直接写出t的值;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.
(1)画出旋转后的三角形;
(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.
(1)求k的取值范围:
(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com