精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知点A(0,16),D(24,0),点B在第一象限,且ABx轴,BD=20,动点P从原点O开始沿y轴正半轴以每秒4个单位长的速度向点A匀速运动,过点P作x轴的平行线与BD交于点C;动点Q从点A开始沿线段AB-BD以每秒8个单位长的速度向点D匀速运动,设点P、Q同时开始运动且时间为t(t>0),当点P与点A重合时停止运动,点Q也随之停止运动.
(1)求点B的坐标及BD所在直线的解析式;
(2)当t为何值时,点Q和点C重合?
(3)当点Q在AB上(包括点B)运动时,求S△PQC与t的函数关系式;
(4)若∠PQC=90°时,求t的值.
(1)∵A(0,16),D(24,0)
∴AO=16,OD=24
过点B作BF⊥OD于F,
∴∠BOF=90°,AOBF,且ABx轴
∴四边形ABFO是矩形
∴BF=AO=16
在Rt△BFD中,由勾股定理,得
FD=12
∴OF=12
∴B(12,16)
设直线BD的解析式为y=kx+b,由题意,得
16=12k+b
0=24k+b
,解得
k=-
4
3
b=32

∴直线BD的解析式为y=-
4
3
x+32

(2)∵PCOD
EC
FD
=
BE
BF

EC
12
=
16-4t
16

∴EC=12-3t
∴PC=24-3t,BE=16-4t
过点Q作QH⊥OD于H,
DQ
BD
=
QH
BF

∵BQ=8t-12
∴DQ=32-8t
32-8t
20
=
QH
16
,解得
QH=
108-32t
5

∴GQ=
108-52t
5

108-52t
5
•(24-3t)
2
=0
,解得
t1=8(不符合题意),t2=
27
13

∴当t2=
27
13
时点Q和点C重合.

(3)当0<t≤1.5时
S△PQC=
(24-3t)(16-4t)
2

∴S△PQC=6t2-72t+192
∴当点Q在AB上(包括点B)运动时,求S△PQC与t的函数关系式为S△PQC=6t2-72t+192

(4)∵
BE
BF
=
BC
BD

20-DC
20
=
16-4t
16

∴DC=5t
∴CQ=32-13t
∵∠PQC=90°
∴△BFD△PQC
FD
CQ
=
BD
PC

12
32-13t
=
20
24-3t

解得t=
11
7

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线l与x轴交于点A(-1.5,0),与y轴交于点B(0,3)
(1)求直线l的解析式;
(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B的坐标分别A(-2
3
,0)、B(-2
3
,2),∠CAO=30°.
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB过点A,且与y轴交于点B.
(1)求直线AB的解析式;
(2)若P是直线AB上一点,且⊙P的半径为1,请直接写出⊙P与坐标轴相切时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.
(1)求直线AC的解析式;
(2)试求出当t为何值时,△OAC与△PAQ相似?
(3)若⊙P的半径为
8
5
,⊙Q的半径为
3
2
;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
3
4
x+6
与x轴、y轴交于A、B两点,M是直线AB上的一个动点,MC⊥x轴于C,MD⊥y轴于D,若点M的横坐标为a.
(1)当点M在线段AB上运动时,用a的代数式表示四边形OCMD的周长;
(2)在(1)的条件下,求四边形OCMD面积的最大值;
(3)以M为圆心MD为半径的⊙M与以A为圆心AC为半径的⊙A相切时,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留)前往终点B地,甲、乙两车的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,小红通过图象得出以下4个信息:
①甲车速度为60千米/小时;
②A、B两地相距240千米;
③乙车行驶2小时追上甲车;
④乙车由A地到B地共用3小时.
上述信息正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某单位急需用车,但又不准备买车,他们准备和一个个体车主或-国营出租车公司签订月租车合同.设汽车每月行驶x(km),应付给个体车主的月费用为y1元,应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图象(两条射线)如图所示,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内,租出租公司的车合算;
(2)每月行驶的路程等于多少时,租两家车的费用相同;
(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2我们就称直线l1与直线l2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.

查看答案和解析>>

同步练习册答案