精英家教网 > 初中数学 > 题目详情
3.下列各数中:0、-$\sqrt{2}$、$\root{3}{8}$、$\frac{5}{13}$、π、0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有(  )
A.1个B.2个C.3个D.4个

分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

解答 解:无理数有:-$\sqrt{2}$,π,0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),共3个.
故选C.

点评 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.已知k>0,b<0,则一次函数y=kx-b的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.求二次三项式-x2+8x+20的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$\sqrt{10}$×$\sqrt{3}$÷2$\sqrt{10}$÷$\frac{1}{6}$$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.9的算术平方根是(  )
A.±3B.±$\sqrt{9}$C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:$\frac{3}{2}$$\sqrt{3}$-$\frac{5}{4}$$\sqrt{3}$+$\frac{1}{4}$$\sqrt{3}$+$\frac{5}{2}$$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15..已知三角形的三边长分别是a、b、c,且a>c,那么|c-a|-$\sqrt{(a+c-b)^{2}}$=b-2c.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,AD是△ABC的中线,过点D的直线交AB边于点M,交AC边的延长线于点N.
①若AM=$\frac{3}{4}$AB,求$\frac{NC}{NA}$的值.
分析:在图1中,作CF∥AB交MN于点F,则BM与CF的数量关系是相等,由AM=$\frac{3}{4}$AB,可得BM与AM的数量关系是BM=$\frac{1}{3}$AM,所以$\frac{NC}{NA}$的值是$\frac{1}{3}$.
②若AM=mAB(m>0),求$\frac{NC}{NA}$的值(用含m的代数式表示)
(2)如图2,AD是△ABC的中线,G是AD上任意一点(点G不与A、D重合),过点G的直线交边AB于M′,交AC边的延长线于N′,若AG=aAD,AM′=bAB(a>0,b>0),请直接写出$\frac{N′C}{N′A}$的值(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图1,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;  
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

查看答案和解析>>

同步练习册答案