精英家教网 > 初中数学 > 题目详情
在等腰△ABC中,AB=AC=13,BC=10,取BC所在的直线为x轴,且点B为原点建立直角坐标系.
(1)求△ABC三个顶点的坐标;
(2)求△ABC的面积.
分析:(1)建立平面直角坐标系,然后过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BD=CD=
1
2
BC,再利用勾股定理列式求出AD,然后写出各点的坐标即可;
(2)根据三角形的面积公式列式计算即可得解.
解答:解:(1)坐标系如图,
过点A作AD⊥BC于D,
∵AB=AC=13,BC=10,
∴BD=CD=
1
2
BC=
1
2
×10=5,
由勾股定理得,AD=
AB2-BD2
=
132-52
=12,
∴A(5,12),B(0,0),C(10,0);

(2)S△ABC=
1
2
BC•AD,
=
1
2
×10×12,
=60.
点评:本题考查了等腰三角形三线合一的性质,勾股定理的应用,三角形的面积,作底边上的高,构造出直角三角形并利用性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图所示,在等腰△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,图中有几对全等三角形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区二模)如图,在等腰△ABC中,底边BC的中点是点D,底角的正切值是
1
3
,将该等腰三角形绕其腰AC上的中点M旋转,使旋转后的点D与A重合,得到△A′B′C′,如果旋转后的底边B′C′与BC交于点N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰△ABC中,AB=AC,∠A=80°,则一腰上的高CD与底边BC的夹角为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,
(1)试说明DE=DF;
(2)求EF长.

查看答案和解析>>

同步练习册答案