精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于(  )
A、10cmB、13cmC、20cmD、26cm
分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AC,BD的中点;
然后根据三角形的中位线定理得到CD=2EM=2NF=10,最后根据梯形的中位线定理即可求得AB的长.
解答:精英家教网解:∵EF是梯形的中位线,
∴EF∥CD∥AB.
∴AM=CM,BN=DN.
∴EM是△ACD的中位线,NF是△BCD的中位线,
∴EM=
1
2
CD,NF=
1
2
CD.
∴EM=NF=
EF-MN
2
=
18-8
2
=5,即CD=10.
∵EF是梯形ABCD的中位线,
∴DC+AB=2EF,即10+AB=2×18=36.
∴AB=26.
故选:D.
点评:此题考查了三角形中位线定理、平行线等分线段定理和梯形的中位线定理,解答时要将三个定理联合使用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案