精英家教网 > 初中数学 > 题目详情
在课外兴趣小组活动时,刘老师给出了如下问题:
如图(1),已知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=
3
AC.
小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)从特殊情况入手,添加条件“∠B=∠D”,如图(2),可证:AB+AD=
3
AC.请你完成此证明.
(2)类比(1)的问题的解决方法,在图(1)证明AB+AD=
3
AC.
分析:(1)如果:“∠B=∠D”,根据∠B与∠D互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC和ABC中得出AD=AB=
3
2
AC,那么AD+AB=
3
AC.
(2)按(1)的思路,作好辅助线后,我们只要证明△CDF与△CBE全等即可得到(1)的条件.根据AAS可证两三角形全等,DF=BE.然后按照(1)的解法进行计算即可.
解答:(1)证明:在题图(2)中,
∵∠B=∠D,且∠B与∠D互补,
∴∠B=∠D=90°.
又∵AC平分∠DAB,∠DAB=60°,
∴∠CAB=∠CAD=30°,
∴AB=AC×cos∠CAB=
3
2
AC,
AD=AC×cos∠CAD=
3
2
AC,
∴AB+AD=
3
AC.

(2)证明:如图,过C点分别作AB、AD的垂线,垂足分别为E、F.

由(1)知,AE+AF=
3
AC.
∵AC为∠BAD的平分线,CF⊥AD,CE⊥AB,
∴∠CFD=∠CEB,CE=CF.
而∠ABC与∠D互补,∠ABC与∠CBE也互补,
∴∠D=∠CBE,
在△CDF与△CBE中,
∠D=∠CBE
∠CFD=∠CEB
CE=CF

∴△CDF与△CBE(AAS),
∴DF=BE,
∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=
3
AC.
点评:本题考查了由特殊到一般的探究能力.通过对特殊问题解法的类比、发散联想,进行创造性思维,从而延伸到一般问题的解题方法.解本题的关键是将(1)中的做法应用到(2)中时恰当添加辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

22、阅读理解:
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=
3
AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=
3
AC;(请你完成此证明)
(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

31、课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

【阅读理解】
课外兴趣小组活动时,老师提出了如下问题:

如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是
B
B

A.SSS      B.SAS      C.AAS        D.HL
(2)求得AD的取值范围是
C
C

A.6<AD<8   B.6≤AD≤8  C.1<AD<7  D.1≤AD≤7
【感悟】
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
【问题解决】
(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.

查看答案和解析>>

同步练习册答案