精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y精英家教网=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
分析:(1)求劣弧AB的长,就要先知道劣弧AB所对的圆心角的度数.过P作AB的垂线设垂足为M,那么在Rt△PMB中,根据圆的半径及P点的纵坐标即可求出∠BPM的度数,也就能求出∠APB的度数.然后根据弧长公式即可求出劣弧AB的长;
(2)在Rt△PMB中,根据PB即半径的长以及PM即P点纵坐标的绝对值即可求出BM的长,也就求出了AB的值,由于A、B两点关于直线x=1对称,由此可确定A、B两点的坐标.根据圆和抛物线的对称性,C点必在直线PM上,根据P点的坐标和圆的半径的长即可得出C点的坐标.根据求出的A、B、C三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据平行四边形的判定和性质可知:当线段OC与PD互相平分时,四边形OPCD是平行四边形,因此D点在y轴上,且OD=PC=2,因此D点的坐标为(0,-2)然后代入抛物线的解析式中即可判断出D是否在抛物线上.
解答:精英家教网解:(1)如图,连接PB,过P作PM⊥x轴,垂足为M,
在Rt△PMB中,PB=2,PM=1,
∴∠MPB=60°,
∴∠APB=120°
AB
的长=
120°
180°
•π•2=
3


(2)在Rt△PMB中,PB=2,PM=1,则MB=MA=
3
,又OM=1,
∴A(1-
3
,0),B(1+
3
,0),
由抛物线及圆的对称性得知点C在直线PM上,
则C(1,-3).
点A、B、C在抛物线上,则
0=a(1+
3
)2+b(1+
3
)+c
0=a(1-
3
)2+b(1-
3
)+c
-3=a+b+c

解之得
a=1
b=-2
c=-2

∴抛物线解析式为y=x2-2x-2;

(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD,
又PC∥y轴,
∴点D在y轴上,
∴OD=2,即D(0,-2),
又点D(0,-2)在抛物线y=x2-2x-2上,
故存在点D(0,-2),使线段OC与PD互相平分.
点评:本题着重考查了待定系数法求二次函数解析式、弧长计算公式、平行四边形的判定和性质等知识点,综合性强,考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案