精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2+(k-5)x+9=0在1<x<2内有一实数根,求实数k的取值范围.
分析:关于x的方程x2+(k-5)x+9=0在1<x<2内有一实数根,即y=x2+(k-5)x+9与x轴在1<x<2内有一交点.可根据函数的性质列不等式组解答.
解答:解:关于x的方程x2+(k-5)x+9=0在1<x<2内有一实数根,
即y=x2+(k-5)x+9与x轴在1<x<2内有一交点,故有以下三种情况:
(1)
△=(k-5)2-4×9=0①
f(1)=1+(k-5)+9>0②
f(2)=4+2(k-5)+9>0③

由①得,k2-10k-11=0,
解得k1=-1,k2=11;
由②得,k>-5;
由③得,k>-
3
2

故实数k的取值范围为k1=-1,k2=11;
(2)
△=(k-5)2-4×9>0①
f(1)=1+(k-5)+9>0②
f(2)=4+2(k-5)+9<0③

由①得,k2-10k-11>0,即(k+1)(k-2)>0,
解得
k>-1
k>2
;或
k<-1
k<2

由②得,k>-5;
由③得,k<-
3
2

故实数k的取值范围为-5<k<-
3
2

(3)
△=(k-5)2-4×9>0①
f(1)=1+(k-5)+9<0②
f(2)=4+2(k-5)+9>0③

由①得,k2-10k-11>0,即(k+1)(k-2)>0,
解得
k>-1
k>2
;或
k<-1
k<2

由②得,k<-5;
由③得,k>-
3
2

由②③可知,不等式组无解.
点评:此题考查了二次函数与x轴的交点与根的判别式的关系,利用根的判别式、交点所对应的函数值列出不等式组是解题的关键,解答时要进行分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案