精英家教网 > 初中数学 > 题目详情

已知:在平面直角坐标系中,点A(2,4),AB⊥x轴于点B,将△AOB沿AO翻折得到△AOB′,OD⊥OA交直线AB′于点D,CD⊥x轴于点C.
(1)求直线AD的解析式;
(2)有一个动点P从点O出发以每秒数学公式个单位的速度沿着射线OA运动,过点P作OA的垂线,与直线AB、AD、CD分别交于点Q、M、N,连接NA,设动点P的运动时间为t,△ANP的面积为s,求s与t的函数关系式;
(3)在(2)的条件下,在动点P运动的过程中,是否存在t的值,使NQ=3MP?若存在,请求出t的值;不存在,请说明理由.

解:(1)在AD上截取AB′=AB,连接OB′.如图1所示:
∵A(2,4),∴OB=2,AB=4.
∵将△AOB沿AO翻折得到△AOB′,
∴AB′=AB=4,OB′=OB=2,OB′⊥AD.
∵OA⊥OD,OB′⊥AD,
∴∠OB′D=∠OB′A=90°,
∴∠B′DO+∠DOB′=90°,∠B′DO+∠OAD=90°,
∴∠DOB′=∠OAD,
∴△OB′D∽△AB′O,
∴OB′2=AB′•DB′,即22=4DB′,
∴DB′=1.
在直角△ODB′中,根据勾股定理得:OD=
∵∠AOD=90°,∴∠DOC+∠AOB=90°,
又∠DCO=90°,∴∠CDO+∠DOC=90°,
∴∠AOB=∠CDO,
∴△CDO∽△BOA,
==,即==
∴CD=1,CO=2,即D(-2,1).
设直线AD的解析式为y=kx+b,将A和D的坐标代入,
得:
解得:
故直线AD的解析式为y=x+

(2)分两种情况:
①如果动点P在线段OA上时,0≤t≤2.如图2①所示:
∵OP=t,OA=2,∴AP=OA-OP=2-t.
∵PE∥AB,∴PE:AB=OE:OB=OP:OA,
∴PE:4=OE:2=t:2=t:2,
∴PE=2t,OE=t.
易证△MAP≌△QAP,则PM=PQ.
∵PM∥OD,∴PM:OD=AP:OA,
∴PM:=(2-t):2
∴PM=AP=(2-t),
∴PQ=PM=(2-t).
过点P作PE⊥BC于E.
∵BQ∥EP∥CN,
∴PQ:PN=BE:CE,
(2-t):PN=(2-t):(2+t),
∴PN=(2+t),
∴s=AP•PN=(2-t)×(2+t)=(4-t2);
②如果动点P在射线OA上时,t>2.如图2②所示:
∵OP=t,OA=2,∴AP=OP-OA=t-2
∵PE∥AB,∴PE:AB=OE:OB=OP:OA,
∴PE:4=OE:2=t:2=t:2,
∴PE=2t,OE=t.
易证△MAP≌△QAP,则PM=PQ.
∵PM∥OD,∴PM:OD=AP:OA,
∴PM:=(t-2):2
∴PM=AP=t-2),
∴PQ=PM=t-2).
过点P作PE⊥BC于E.
∵BQ∥EP∥CN,
∴PQ:PN=BE:CE,
t-2):PN=(t-2):(t+2),
∴PN=(t+2),
∴s=AP•PN=t-2)×(t+2)=(t2-4).
综上,可知s=


(3)在动点P运动的过程中,存在t=,使NQ=3MP.理由如下:
分两种情况:
①如果动点P在线段OA上时,0≤t≤2.
∵NQ=3MP,MP=PQ,
∴PN=2PQ,
又∵PN=(2+t),PQ=(2-t),
(2+t)=2×(2-t),
∴t=,符合题意;
②如果动点P在射线OA上时,t>2.
∵NQ=3MP,MP=PQ,
∴PN=4PQ,
又∵PN=(t+2),PQ=t-2),
(t+2)=4×t-2),
∴t=,符合题意.
故在动点P运动的过程中,存在t=,使NQ=3MP.
分析:(1)在AD上截取AB′=AB,连接OB′,先由轴对称的性质得出AB′=AB=4,OB′=OB=2,OB′⊥AD,再证明△OB′D∽△AB′O,根据相似三角形对应边成比例,得出DB′=1,则OD=,再证明△CDO∽△BOA,得出D(-2,1),然后运用待定系数法即可求出直线AD的解析式;
(2)分两种情况:①动点P在线段OA上;②动点P在射线OA上.对于①,画出图形,由于△ANP的面积s=AP•PN,而AP=OA-OP=2-t,所以关键是用含t的代数式表示PN.先由ASA得出△MAP≌△QAP,则PM=PQ,再由PM∥OD,得出PM=AP=(2-t).然后过点P作PE⊥BC于E,由平行线分线段成比例定理,可得PQ:PN=BE:CE,从而求出PN;对于②,同①可求;
(3)分两种情况:①动点P在线段OA上时,则有PN=2PQ,据此列出关于t的方程;②动点P在射线OA上时,则有PN=4PQ,据此列出关于t的方程.如果求出的t值经检验,符合题意,则存在;否则,不存在.
点评:本题主要考查了轴对称的性质,相似三角形的判定与性质,平行线分线段成比例定理,以及一次函数的综合应用,要注意的是(2)与(3)中,要根据P点的不同位置进行分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标xOy中,反比例函数y=
k
x
的图象与y=
3
x
的图象关于x轴对称,又与直线y=ax+2交于点A(m,3).已知点M(-3,y1)、N(l,y2)和Q(3,y3)三点都在反比例函数y=
k
x
的图象上. 
(l)比较y1、y2、y3的大小;
(2)试确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系里,如图,已知直线:y=-x+3
2
交y轴于点A,交x轴于点B,三角板OCD如图1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD绕点.顺时针旋转15°,得到△OC1D1(如图2),这时OC1交AB于点E,C1D1交AB于点F.
(1)求∠EFC1的度数;
(2)求线段AD1的长;
(3)若把△OC1D1,绕点0顺时针再旋转30.得到△OC2D2,这时点B在△OC2D2的内部、外部、还是边上?证明你的判断.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标中,已知点P(3-m,2m-4)在第一象限,则实数m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,已知直线y=kx+b与直线y=
1
2
x
平行,分别交x轴,y轴于A,B两点,且A点的横坐标是-4,以AB为边在第二象限内作矩形ABCD,使AD=
5

(1)求矩形ABCD的面积;
(2)过点D作DH⊥x轴,垂足为H,试求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为
y=-
6
x
y=-
6
x

查看答案和解析>>

同步练习册答案