精英家教网 > 初中数学 > 题目详情
9.三通管的立体图如图所示,则这个几何体的主视图是(  )
A.B.C.D.

分析 根据从正面看得到的图形是主视图,可得答案.

解答 解:从正面看是一个倒写的“T”字,
故选:B.

点评 本题考查了简单组合体的三视图,从正面看得到的图形是主视图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.下列运算中,计算结果正确的是(  )
A.a2•a3=a6B.a2+a3=a5C.(a23=a6D.a12÷a6=a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.【问题提出】
已知任意三角形的两边及夹角(是锐角),求三角形的面积.
【问题探究】
为了解决上述问题,让我们从特殊到一般展开探究.
探究一:在Rt△ABC(图1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面积(用含a、b、α的代数式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=$\frac{AB}{AC}$
∴AB=b•sinα
∴S△ABC=$\frac{1}{2}$BC•AB=$\frac{1}{2}$absinα
探究二:
锐角△ABC(图2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
探究三:
钝角△ABC(图3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面积.(用含a、b、α的代数式表示)
【问题解决】
用文字叙述:已知任意三角形的两边及夹角(是锐角),求三角形面积的方法是S=$\frac{1}{2}$absin∠C(∠C是a、b两边的夹角)
【问题应用】
已知平行四边形ABCD(图4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四边形ABCD的面积.(用含a、b、α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在△ABC中,∠C=90°,BC=5,AB=13,则sinB是(  )
A.$\frac{5}{13}$B.$\frac{5}{12}$C.$\frac{12}{13}$D.$\frac{13}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列方程中关于x的一元二次方程的是(  )
A.x2+$\frac{1}{{x}^{2}}$=0B.x3+x-1=0C.x2-2xy+y2=0D.x2+2x-3=0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.王林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(-3,3),(-4,0),(-4,-3),(2,-2),(5,-3),(5,0),(5,4)的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列命题中是真命题的是(  )
A.经过直线外一点,有且仅有一条直线与一线与已知直线垂直
B.平分弦的直径垂直于弦
C.对角线互相平分且垂直的四边形是菱形
D.反比例函数y=$\frac{k}{x}$,当k<0时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案