【题目】已知一次函数y=(2m-3)x+m+1经过点A(1,4)
(1)求m的值;
(2)画出此一次函数的图象;
(3)若一次函数交y轴于点B,求△OAB的面积.
【答案】(1)m=2;(2)见解析;(3).
【解析】
(1)把点A(1,4)代入一次函数y=(2m-3)x+m+1即可求出m的值;
(2)已知点A(1,4),再令x=0,y=3,根据两点确定一条直线,画出函数图象即可;
(3)过点A作AC⊥y轴于点C,求得AC=1,y=x+3与y轴交于点B(0,3),求得OB=3,根据△OAB的面积即可求得;
解:
(1)∵一次函数y=(2m-3)x+m+1经过点A(1,4),
∴4=2m-3+m+1,
解得:m=2,
∴一次函数的解析式为:y=x+3;
(2)如图:
(3)如图:过点A作AC⊥y轴于点C,
则AC=1,
∵y=x+3与y轴的交点为:令x=0,求得y=3,
∴y=x+3与y轴的交点交于点B(0,3),
∴OB=3,
∴△OAB的面积;
科目:初中数学 来源: 题型:
【题目】如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.
(1)如图1,求证:∠B=∠C;
(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;
(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是( )
A. 45.2分钟 B. 48分钟 C. 46分钟 D. 33分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,E、F分别是AC、BC上两点,且ED⊥FD.
(1)如图1,若E是AC中点,则BF=______,EF=______,AE2+BF2______EF2(填“>,<或=”);
(2)如图2,若点E是AC边上任意一点,AE2+BF2_____EF2(填“>,<或=”),请说明理由;
(3)若点E在CA延长上,(2)中三条线段之间的关系是否成立?请画图说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.
(1)如图1中,PG与PC的位置关系是 ,数量关系是 ;
(2)如图2将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD和矩形BEFG”其它条件不变,求证:PG=PC;
(3)如图3,若将条件“正方形ABCD和正方形BEFG”改为“菱形ABCD和菱形BEFG”,点A,B,E在同一条直线上,连接DF,P是线段DF的中点,连接PG、PC,且∠ABC=∠BEF=60°,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(a﹣2)2+=0.
(1)求直线AB的解析式;
(2)若点M为直线y=mx上一点,且△ABM是等腰直角三角形,求m值;
(3)过A点的直线y=kx﹣2k交y轴于负半轴于P,N点的横坐标为﹣1,过N点的直线y=x﹣交AP于点M,试证明的值为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com