精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,点C的坐标为(0,
3
).
(1)直接写出A、B、D三点坐标;
(2)若抛物线y=x2+bx+c过A、D两点,求这条抛物线的解析式,并判断点B是否在所求的抛物线上,说明理由.
精英家教网
分析:(1)由于AB是直径,且垂直于弦CD,由垂径定理即可求得OD的长,也就能求出D点的坐标;
连接AC、BC;在Rt△ABC中,OC⊥AB,由射影定理可得:OC2=OA•OB,用⊙O的半径表示出OA、OB的长,代入上式即可求出⊙O的半径,进而可得到A、B的坐标;
(2)将A、D的坐标代入抛物线的解析式中,即可求得待定系数的值;确定了抛物线的解析式后,再将B点坐标代入,即可判断出B点是否在该二次函数的图象上.
解答:精英家教网解:(1)连接AC、BC,则∠ACB=90°;
∵AB是⊙O的直径,且AB⊥CD,
∴OC=OD;
易知OC=
3
,则OD=OC=
3
,即D(0,-
3
);
Rt△ABC中,OC⊥AB,由射影定理,得:
OA•OB=OC2=3,
设⊙O的半径为R,则OA=R-1,OB=R+1,代入上式,得:
(R+1)(R-1)=3,解得R=2;
∴OA=1,OB=3,即A(-1,0),B(3,0);
所以A、B、D的坐标分别为:A(-1,0),B(3,0),D(0,-
3
).

(2)将A(-1,0),D(0,-
3
)代入y=x2+bx+c中,得:
c=-
3
1-b+c=0
,解得
b=1-
3
c=-
3

∴y=x2+(1-
3
)x-
3

当x=3时,x2+(1-
3
)x-
3
=9+(1-
3
)×3-
3
=12-4
3
≠0;
∴点B(3,0)不在抛物线y=x2+(1-
3
)x-
3
上.
点评:此题主要考查了垂径定理、圆周角定理、相似三角形的性质及二次函数解析式的确定;能够在Rt△ACB中通过射影定理正确的求得⊙O的半径,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案